Abstract
Presently, in the event of a failure in Automated Driving Systems, control architectures rely on hardware redundancies over software solutions to assure reliability or wait for human interaction in takeover requests to achieve a minimal risk condition. As user confidence and final acceptance of this novel technology are strongly related to enabling safe states, automated fall-back strategies must be assured as a response to failures while the system is performing a dynamic driving task. In this work, a fail-operational control architecture approach and dead-reckoning strategy in case of positioning failures are developed and presented. A fail-operational system is capable of detecting failures in the last available positioning source, warning the decision stage to set up a fall-back strategy and planning a new trajectory in real time. The surrounding objects and road borders are considered during the vehicle motion control after failure, to avoid collisions and lane-keeping purposes. A case study based on a realistic urban scenario is simulated for testing and system verification. It shows that the proposed approach always bears in mind both the passenger’s safety and comfort during the fall-back maneuvering execution.
Original language | English |
---|---|
Article number | 442 |
Pages (from-to) | 442 |
Number of pages | 1 |
Journal | Sensors |
Volume | 20 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2 Jan 2020 |
Keywords
- Fail-operational systems
- Fall-back strategy
- Automated driving
Project and Funding Information
- Project ID
- info:eu-repo/grantAgreement/EC/H2020/737469/EU/Advancing fail-aware, fail-safe, and fail-operational electronic components, systems, and architectures for fully automated driving to make future mobility safer, affordable, and end-user aceptable/AutoDrive
- Funding Info
- This research was funded by AutoDrive within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement number 737469.