A local search method for graph clustering heuristics based on partitional Distribution learning

Diana Manjarres, Itziar Landa-Torres, Javier Del Ser

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The community structure of complex networks reveals hidden relationships in the organization of their constituent nodes. Indeed, many practical problems stemming from different fields of knowledge such as Biology, Sociology, Chemistry and Computer Science can be modeled as a graph. Therefore, graph analysis and community detection have become a key component for understanding the inherent relational characteristics underlying different systems and processes. In this regard, distinct unsupervised quality metrics such as conductance, coverage and modularity, have upsurged in order to evaluate the clustering arrangements based on structural and topological characteristics of the cluster space. In this regard graph clustering can be formulated as an optimization problem based on the maximization of one of such metrics, for which a number of nature-inspired heuristic solvers has been proposed in the literature. This paper elaborates on a novel local search method that allows boosting the convergence of such heuristics by estimating and sampling the cluster arrangement distribution from the set of intermediate produced solutions of the algorithm at hand. Simulation results reveal a generalized better performance compared towards other community detection algorithms in synthetic and real datasets.

Original languageEnglish
Title of host publication2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1972-1977
Number of pages6
ISBN (Electronic)9781509046010
DOIs
Publication statusPublished - 5 Jul 2017
Event2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Donostia-San Sebastian, Spain
Duration: 5 Jun 20178 Jun 2017

Publication series

Name2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings

Conference

Conference2017 IEEE Congress on Evolutionary Computation, CEC 2017
Country/TerritorySpain
CityDonostia-San Sebastian
Period5/06/178/06/17

Fingerprint

Dive into the research topics of 'A local search method for graph clustering heuristics based on partitional Distribution learning'. Together they form a unique fingerprint.

Cite this