TY - GEN
T1 - A novel adaptive density-based ACO algorithm with minimal encoding redundancy for clustering problems
AU - Villar-Rodriguez, Esther
AU - Gonzalez-Pardo, Antonio
AU - Del Ser, Javier
AU - Bilbao, Miren Nekane
AU - Salcedo-Sanz, Sancho
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/11/14
Y1 - 2016/11/14
N2 - In the so-called Big Data paradigm descriptive analytics are widely conceived as techniques and models aimed at discovering knowledge within unlabeled datasets (e.g. patterns, similarities, etc) of utmost help for subsequent predictive and prescriptive methods. One of these techniques is clustering, which hinges on different multi-dimensional measures of similarity between unsupervised data instances so as to blindly collect them in groups of clusters. Among the myriad of clustering approaches reported in the literature this manuscript focuses on those relying on bio-inspired meta-heuristics, which have been lately shown to outperform traditional clustering schemes in terms of convergence, adaptability and parallelization. Specifically this work presents a new clustering approach based on the processing fundamentals of the Ant Colony Optimization (ACO) algorithm, i.e. stigmergy via pheromone trails and progressive construction of solutions through a graph. The novelty of the proposed scheme beyond previous research on ACO-based clustering lies on a significantly pruned graph that not only minimizes the representation redundancy of the problem at hand, but also allows for an embedded estimation of the number of clusters within the data. However, this approach imposes a modified ant behavior so as to account for the optimality of entire paths rather than that of single steps within the graph. Simulation results over conventional datasets will evince the promising performance of our approach and motivate further research aimed at its applicability to real scenarios.
AB - In the so-called Big Data paradigm descriptive analytics are widely conceived as techniques and models aimed at discovering knowledge within unlabeled datasets (e.g. patterns, similarities, etc) of utmost help for subsequent predictive and prescriptive methods. One of these techniques is clustering, which hinges on different multi-dimensional measures of similarity between unsupervised data instances so as to blindly collect them in groups of clusters. Among the myriad of clustering approaches reported in the literature this manuscript focuses on those relying on bio-inspired meta-heuristics, which have been lately shown to outperform traditional clustering schemes in terms of convergence, adaptability and parallelization. Specifically this work presents a new clustering approach based on the processing fundamentals of the Ant Colony Optimization (ACO) algorithm, i.e. stigmergy via pheromone trails and progressive construction of solutions through a graph. The novelty of the proposed scheme beyond previous research on ACO-based clustering lies on a significantly pruned graph that not only minimizes the representation redundancy of the problem at hand, but also allows for an embedded estimation of the number of clusters within the data. However, this approach imposes a modified ant behavior so as to account for the optimality of entire paths rather than that of single steps within the graph. Simulation results over conventional datasets will evince the promising performance of our approach and motivate further research aimed at its applicability to real scenarios.
UR - http://www.scopus.com/inward/record.url?scp=85008251719&partnerID=8YFLogxK
U2 - 10.1109/CEC.2016.7744186
DO - 10.1109/CEC.2016.7744186
M3 - Conference contribution
AN - SCOPUS:85008251719
T3 - 2016 IEEE Congress on Evolutionary Computation, CEC 2016
SP - 3139
EP - 3145
BT - 2016 IEEE Congress on Evolutionary Computation, CEC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE Congress on Evolutionary Computation, CEC 2016
Y2 - 24 July 2016 through 29 July 2016
ER -