TY - GEN
T1 - Adaptive feed-forward cancellation control of a full-bridge dc-ac voltage inverter
AU - Malo, Shane
AU - Grino, Robert
PY - 2008
Y1 - 2008
N2 - Dc-ac inverters are needed in many applications. The full-bridge dc-ac inverter has been widely used in industry applications and trough the literature. If the nature of the load is not known a priori, some considerations should be taken in order to assure the quality of service to be provided by the inverter. When nonlinear loads are fed by a full-bridge dc-ac inverter, odd harmonics of the fundamental ac frequency are introduced into the output voltage shape. For the purpose of producing a good sinusoidal output voltage signal, the control strategy must be able to reject periodic output disturbances. Adaptive Feed-forward Cancellation (AFC) is a control technique that has been successfully used to selectively reject periodic output disturbances in continuous-time mechanical systems. This paper deals with the use of AFC to control the output voltage of an electrical system, in this case, a dc-ac full-bridge inverter, to produce a standard European ac voltage signal, 230 Vrms and 50 Hz, accomplishing the design of the controller directly in the z-domain.
AB - Dc-ac inverters are needed in many applications. The full-bridge dc-ac inverter has been widely used in industry applications and trough the literature. If the nature of the load is not known a priori, some considerations should be taken in order to assure the quality of service to be provided by the inverter. When nonlinear loads are fed by a full-bridge dc-ac inverter, odd harmonics of the fundamental ac frequency are introduced into the output voltage shape. For the purpose of producing a good sinusoidal output voltage signal, the control strategy must be able to reject periodic output disturbances. Adaptive Feed-forward Cancellation (AFC) is a control technique that has been successfully used to selectively reject periodic output disturbances in continuous-time mechanical systems. This paper deals with the use of AFC to control the output voltage of an electrical system, in this case, a dc-ac full-bridge inverter, to produce a standard European ac voltage signal, 230 Vrms and 50 Hz, accomplishing the design of the controller directly in the z-domain.
KW - Modeling, operation and control of power systems
UR - http://www.scopus.com/inward/record.url?scp=79961017912&partnerID=8YFLogxK
U2 - 10.3182/20080706-5-KR-1001.1794
DO - 10.3182/20080706-5-KR-1001.1794
M3 - Conference contribution
AN - SCOPUS:79961017912
SN - 9783902661005
T3 - IFAC Proceedings Volumes (IFAC-PapersOnline)
BT - Proceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
T2 - 17th World Congress, International Federation of Automatic Control, IFAC
Y2 - 6 July 2008 through 11 July 2008
ER -