Akats: A System for Resilient Deployments on Edge Computing Environments Using Federated Machine Learning Techniques

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Edge computing is a game changer for IoT, as it allows IoT devices to independently process and analyze data instead of just sending it to the cloud. But managing this considerable number of devices and deploying workloads on them in a coordinated and intelligent manner remains a challenge nowadays. In this paper, we focus on introducing the resilience dimension into these deployments, and we provide two main contributions: the use of federated machine learning techniques to develop a collaborative tool between the different devices aimed at detecting the possibility of a device failure, and subsequently, the utilization of the inferred information to optimize deployment plans ensuring the resilience in the devices. These two advances are implemented in an intelligent system, Akats, whose architecture is described in detail in this article. Finally, an application scenario is presented, based on Industry 4.0 - Machine predictive maintenance, to exemplify the benefits of the proposed intelligent system.

Original languageEnglish
Title of host publication2023 8th International Conference on Smart and Sustainable Technologies, SpliTech 2023
EditorsPetar Solic, Sandro Nizetic, Joel J. P. C. Rodrigues, Joel J. P. C. Rodrigues, Joel J. P. C. Rodrigues, Diego Lopez-de-Ipina Gonzalez-de-Artaza, Toni Perkovic, Luca Catarinucci, Luigi Patrono
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9789532901283
DOIs
Publication statusPublished - 2023
Event8th International Conference on Smart and Sustainable Technologies, SpliTech 2023 - Hybrid, Split/Bol, Croatia
Duration: 20 Jun 202323 Jun 2023

Publication series

Name2023 8th International Conference on Smart and Sustainable Technologies, SpliTech 2023

Conference

Conference8th International Conference on Smart and Sustainable Technologies, SpliTech 2023
Country/TerritoryCroatia
CityHybrid, Split/Bol
Period20/06/2323/06/23

Keywords

  • AIOps
  • Edge Computing
  • Federated Machine Learning
  • FML
  • Optimization

Fingerprint

Dive into the research topics of 'Akats: A System for Resilient Deployments on Edge Computing Environments Using Federated Machine Learning Techniques'. Together they form a unique fingerprint.

Cite this