Abstract
Multi Jet Fusion (MJF), an innovative additive manufacturing (AM) technique in the field of Powder Bed Fusion (PBF) developed by Hewlett-Packard (HP) Inc. (Palo Alto, CA, USA), has been designed to produce polymer parts using thermoplastic-based powders, primarily focusing on polyamide 12 (PA12). Employing a layer-by-layer approach, MJF enables the rapid production of intricate components, reportedly up to 10 times faster than other AM processes. While the mechanical properties of MJF-printed PA12 and the impact of build orientation on those properties have already been explored in various studies, less attention has been given to the mechanical performance of MJF-printed PA12 components under complex loads and accurate predictive models. This contribution aims to assess the applicability of a constitutive model based on a transversely isotropic behaviour under linear elastic deformation for predicting the mechanical response of MJF-printed PA12 parts through numerical simulations. Both uniaxial tensile and shear tests were carried out on printed samples to determine the elastic properties of MJF-printed PA12, with additional testing on printed complex handle-shaped parts. Finally, a numerical model was developed to simulate the mechanical tests of the handles. Results from tests on printed samples showed that MJF-printed PA12, to some extent, behaves as a transversely isotropic material. Furthermore, using a constitutive model that assumes a transversely isotropic behaviour under linear elastic deformation for predicting the mechanical response of MJF-printed PA12 parts in numerical simulations could be a reasonable approach, provided that the material stress levels remain within the linear range. However, the particularities of the stress-strain curve of MJF-printed PA12 complicate determining the elasticity-to-plasticity transition point.
Original language | English |
---|---|
Article number | 56 |
Journal | Polymers |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2024 |
Funding
This research was financially supported by the ELKARTEK program funded by the Basque Government through the ADDIMORF project (grant number KK-2021/00062).
Funders | Funder number |
---|---|
Eusko Jaurlaritza | KK-2021/00062 |
Keywords
- additive manufacturing
- anisotropy
- material constitutive models
- mechanical properties
- multi jet fusion
- polyamide 12