Bioinspired Computational Intelligence and Transportation Systems: A Long Road Ahead

Javier Del Ser, Eneko Osaba, Javier Sanchez-Medina, Iztok Fister, Iztok Fister

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

This paper capitalizes on the increasingly high relevance gained by data-intensive technologies in the development of intelligent transportation system, which calls for the progressive adoption of adaptive, self-learning methods for solving modeling, simulation, and optimization problems. In this regard, certain mechanisms and processes observed in nature, including the animal brain, have proved themselves to excel not only in terms of efficiently capturing time-evolving stimuli, but also at undertaking complex tasks by virtue of mechanisms that can be extrapolated to computer algorithms and methods. This paper comprehensively reviews the state-of-The-Art around the application of bioinspired methods to the challenges arising in the broad field of intelligent transportation system (ITS). This systematic survey is complemented by an initiatory taxonomic introduction to bioinspired computational intelligence, along with the basics of its constituent techniques. A focus is placed on which research niches are still unexplored by the community in different ITS subareas. The open issues and research directions for the practical implementation of ITS endowed with bioinspired computational intelligence are also discussed in detail.

Original languageEnglish
Article number8661647
Pages (from-to)466-495
Number of pages30
JournalIEEE Transactions on Intelligent Transportation Systems
Volume21
Issue number2
DOIs
Publication statusPublished - Feb 2020

Keywords

  • Bioinspired computational intelligence
  • autonomous and cooperative driving
  • driver characterization
  • route planning
  • smart mobility
  • traffic forecasting

Fingerprint

Dive into the research topics of 'Bioinspired Computational Intelligence and Transportation Systems: A Long Road Ahead'. Together they form a unique fingerprint.

Cite this