Brain-Machine Interface in Chronic Stroke: Randomized Trial Long-Term Follow-up

Ander Ramos-Murguialday, Marco R. Curado, Doris Broetz, Özge Yilmaz, Fabricio L. Brasil, Giulia Liberati, Eliana Garcia-Cossio, Woosang Cho, Andrea Caria, Leonardo G. Cohen, Niels Birbaumer

Research output: Contribution to journalArticlepeer-review

67 Citations (Scopus)

Abstract

Background. Brain-machine interfaces (BMIs) have been recently proposed as a new tool to induce functional recovery in stroke patients. Objective. Here we evaluated long-term effects of BMI training and physiotherapy in motor function of severely paralyzed chronic stroke patients 6 months after intervention. Methods. A total of 30 chronic stroke patients with severe hand paresis from our previous study were invited, and 28 underwent follow-up assessments. BMI training included voluntary desynchronization of ipsilesional EEG-sensorimotor rhythms triggering paretic upper-limb movements via robotic orthoses (experimental group, n = 16) or random orthoses movements (sham group, n = 12). Both groups received identical physiotherapy following BMI sessions and a home-based training program after intervention. Upper-limb motor assessment scores, electromyography (EMG), and functional magnetic resonance imaging (fMRI) were assessed before (Pre), immediately after (Post1), and 6 months after intervention (Post2). Results. The experimental group presented with upper-limb Fugl-Meyer assessment (cFMA) scores significantly higher in Post2 (13.44 ± 1.96) as compared with the Pre session (11.16 ± 1.73; P =.015) and no significant changes between Post1 and Post2 sessions. The Sham group showed no significant changes on cFMA scores. Ashworth scores and EMG activity in both groups increased from Post1 to Post2. Moreover, fMRI-BOLD laterality index showed no significant difference from Pre or Post1 to Post2 sessions. Conclusions. BMI-based rehabilitation promotes long-lasting improvements in motor function of chronic stroke patients with severe paresis and represents a promising strategy in severe stroke neurorehabilitation.

Original languageEnglish
Pages (from-to)188-198
Number of pages11
JournalNeurorehabilitation and Neural Repair
Volume33
Issue number3
DOIs
Publication statusPublished - Mar 2019

Keywords

  • brain-machine interface (BMI)
  • chronic stroke
  • electrophysiology (EEG)
  • long-term effects
  • neurorehabilitation

Fingerprint

Dive into the research topics of 'Brain-Machine Interface in Chronic Stroke: Randomized Trial Long-Term Follow-up'. Together they form a unique fingerprint.

Cite this