Characterization of Optical Coherence Tomography Images for Colon Lesion Differentiation under Deep Learning

Cristina L. Saratxaga, Jorge Bote, Juan F. Ortega-Morán, Artzai Picón, Elena Terradillos, Nagore Arbide del Río, Nagore Andraka, Estibaliz Garrote, Olga M. Conde

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
1 Downloads (Pure)

Abstract

(1) Background: Clinicians demand new tools for early diagnosis and improved detection of colon lesions that are vital for patient prognosis. Optical coherence tomography (OCT) allows microscopical inspection of tissue and might serve as an optical biopsy method that could lead to in-situ diagnosis and treatment decisions; (2) Methods: A database of murine (rat) healthy, hyperplastic and neoplastic colonic samples with more than 94,000 images was acquired. A methodology that includes a data augmentation processing strategy and a deep learning model for automatic classification (benign vs. malignant) of OCT images is presented and validated over this dataset. Comparative evaluation is performed both over individual B-scan images and C-scan volumes; (3) Results: A model was trained and evaluated with the proposed methodology using six different data splits to present statistically significant results. Considering this, 0.9695 (_0.0141) sensitivity and 0.8094 (_0.1524) specificity were obtained when diagnosis was performed over B-scan images. On the other hand, 0.9821 (_0.0197) sensitivity and 0.7865 (_0.205) specificity were achieved when diagnosis was made considering all the images in the whole C-scan volume; (4) Conclusions: The proposed methodology based on deep learning showed great potential for the automatic characterization of colon polyps and future development of the optical biopsy paradigm.
Original languageEnglish
Article number3119
Pages (from-to)3119
Number of pages1
JournalApplied Sciences
Volume11
Issue number7
DOIs
Publication statusPublished - 1 Apr 2021

Keywords

  • Colon cancer
  • Colon polyps
  • OCT
  • Deep learning
  • Optical biopsy
  • Animal rat models
  • CADx

Project and Funding Information

  • Project ID
  • info:eu-repo/grantAgreement/EC/H2020/732111/EU/Multimodal highly-sensitive PhotonICs endoscope for improved in-vivo COLOn Cancer diagnosis and clinical decision support/PICCOLO
  • Funding Info
  • This work was partially supported by PICCOLO project. This project has received funding_x000D_ from the European Union’s Horizon2020 Research and Innovation Programme under grant agreement No. 732111. _x000D_ This research has also received funding from the Basque Government’s Industry Department under the ELKARTEK_x000D_ program’s project ONKOTOOLS under agreement KK-2020/00069 and the industrial doctorate program UC- DI14 of the University of Cantabria.

Fingerprint

Dive into the research topics of 'Characterization of Optical Coherence Tomography Images for Colon Lesion Differentiation under Deep Learning'. Together they form a unique fingerprint.

Cite this