Comparative Analysis of Classical and Quantum-Inspired Solvers: A Preliminary Study on the Weighted Max-Cut Problem

Aitor Morais*, Eneko Osaba, Iker Pastor, Izaskun Oregi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Combinatorial optimization is essential across numerous disciplines. Traditional metaheuristics excel at exploring complex solution spaces efficiently, yet they often struggle with scalability. Deep learning has become a viable alternative for quickly generating high-quality solutions, particularly when metaheuristics underperform. In recent years, quantum-inspired approaches such as tensor networks have shown promise in addressing these challenges. Despite these advancements, a thorough comparison of the different paradigms is missing. This study evaluates eight algorithms on Weighted Max-Cut graphs ranging from 10 to 250 nodes. Specifically, we compare a Genetic Algorithm representing metaheuristics, a Graph Neural Network for deep learning, and the Density Matrix Renormalization Group as a tensor network approach. Our analysis focuses on solution quality and computational efficiency (i.e., time and memory usage). Numerical results show that the Genetic Algorithm achieves near-optimal results for small graphs, although its computation time grows significantly with problem size. The Graph Neural Network offers a balanced solution for medium-sized instances with low memory demands and rapid inference, yet it exhibits more significant variability on larger graphs. Meanwhile, the Tensor Network approach consistently yields high approximation ratios and efficient execution on larger graphs, albeit with increased memory consumption.

Original languageEnglish
Title of host publicationGECCO 2025 Companion - Proceedings of the 2025 Genetic and Evolutionary Computation Conference Companion
EditorsGabriela Ochoa
PublisherAssociation for Computing Machinery, Inc
Pages2449-2457
Number of pages9
ISBN (Electronic)9798400714641
DOIs
Publication statusPublished - 11 Aug 2025
Event2025 Genetic and Evolutionary Computation Conference Companion, GECCO 2025 Companion - Malaga, Spain
Duration: 14 Jul 202518 Jul 2025

Publication series

NameGECCO 2025 Companion - Proceedings of the 2025 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2025 Genetic and Evolutionary Computation Conference Companion, GECCO 2025 Companion
Country/TerritorySpain
CityMalaga
Period14/07/2518/07/25

Keywords

  • Combinatorial Optimization
  • Genetic Algorithms
  • Graph Neural Networks
  • Quantum-Inspired Algorithms
  • Tensor Networks

Fingerprint

Dive into the research topics of 'Comparative Analysis of Classical and Quantum-Inspired Solvers: A Preliminary Study on the Weighted Max-Cut Problem'. Together they form a unique fingerprint.

Cite this