Control co-design for wave energy farms: Optimisation of array layout and mooring configuration in a realistic wave climate

Yerai Peña-Sanchez*, Demián García-Violini, Markel Penalba, Ander Zarketa-Astigarraga, Francesco Ferri, Vincenzo Nava, John V. Ringwood

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This paper presents a novel Control Co-Design (CCD) methodology aimed at economically optimising the layout of wave energy converter (WEC) arrays. CCD ensures the synergy of optimised WEC and array parameters with the final control strategy, resulting in a comprehensive and efficient design of the array. By integrating a spectral-based control strategy into the array layout design, this study pursues the twin objectives of maximising energy absorption while reducing costs. To prove the performance of the proposed CCD methodology, an application case is proposed where the inter-device distance, alignment, and mooring configuration of a five-device array, considering realistic wave scenarios, are optimised. Energy capture and system cost evaluations are conducted, with results emphasising the significance of incorporating advanced control strategies in the design phase to improve energy absorption and reduce costs. With the application case, the study demonstrates that the optimal layout of a WEC array considering economic factors may differ from the optimal from purely technical factors, such as energy absorption, in the analysed case.

Original languageEnglish
Article number120506
JournalRenewable Energy
Volume227
DOIs
Publication statusPublished - Jun 2024

Keywords

  • Control co-design
  • Mooring lines
  • Optimisation
  • Techno-economics
  • Wave energy
  • Wave farms

Fingerprint

Dive into the research topics of 'Control co-design for wave energy farms: Optimisation of array layout and mooring configuration in a realistic wave climate'. Together they form a unique fingerprint.

Cite this