Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation

Artzai Picon, Arantza Bereciartua-Perez, Itziar Eguskiza, Javier Romero-Rodriguez, Carlos Javier Jimenez-Ruiz, Till Eggers, Christian Klukas, Ramon Navarra-Mestre

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
15 Downloads (Pure)

Abstract

Performing accurate and automated semantic segmentation of vegetation is a first algorithmic step towards more complex models that can extract accurate biological information on crop health, weed presence and phenological state, among others. Traditionally, models based on normalized difference vegetation index (NDVI), near infrared channel (NIR) or RGB have been a good indicator of vegetation presence. However, these methods are not suitable for accurately segmenting vegetation showing damage, which precludes their use for downstream phenotyping algorithms. In this paper, we propose a comprehensive method for robust vegetation segmentation in RGB images that can cope with damaged vegetation. The method consists of a first regression convolutional neural network to estimate a virtual NIR channel from an RGB image. Second, we compute two newly proposed vegetation indices from this estimated virtual NIR: the infrared-dark channel subtraction (IDCS) and infrared-dark channel ratio (IDCR) indices. Finally, both the RGB image and the estimated indices are fed into a semantic segmentation deep convolutional neural network to train a model to segment vegetation regardless of damage or condition. The model was tested on 84 plots containing thirteen vegetation species showing different degrees of damage and acquired over 28 days. The results show that the best segmentation is obtained when the input image is augmented with the proposed virtual NIR channel (F1=0.94) and with the proposed IDCR and IDCS vegetation indices (F1=0.95) derived from the estimated NIR channel, while the use of only the image or RGB indices lead to inferior performance (RGB(F1=0.90) NIR(F1=0.82) or NDVI(F1=0.89) channel). The proposed method provides an end-to-end land cover map segmentation method directly from simple RGB images and has been successfully validated in real field conditions.
Original languageEnglish
Pages (from-to)199-210
Number of pages12
JournalArtificial Intelligence in Agriculture
Volume6
DOIs
Publication statusPublished - Jan 2022

Keywords

  • Vegetation indices estimation
  • Vegetation coverage map
  • Near infrared estimation
  • Convolutional neural network
  • Deep learning

Fingerprint

Dive into the research topics of 'Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation'. Together they form a unique fingerprint.

Cite this