Dilated LSTM Networks for Short-Term Traffic Forecasting using Network-Wide Vehicle Trajectory Data

Panagiotis Fafoutellis, Eleni I. Vlahogianni, Javier Del Ser

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Short-term traffic forecasting is anticipated as an always evolving research topic, boosted by the tremendous recent advances of Machine Learning and Deep Learning, as well as computational power of modern PCs. In this paper, the Dilated Recurrent Neural Networks are introduced in traffic forecasting. Their architecture promotes the deployment of long-term relations and prevents common issues of RNNs, such as exploding and vanishing gradients. The Dilated LSTM Network is exploited to perform traffic conditions forecasting using network-wide data. The data consist of GPS trajectories of ride-hailing company DiDi's vehicles from November of 2016. After preprocessing the data and organizing them into section's travel speed of five-minute time resolution timeseries for each one of the 498 road sections of the road network of Xi'an, China, we fed them to the Dilated LSTM Network. The model consists of four hidden layers, each of them implementing an LSTM Network with one, two and four-step dilation correspondingly. The model achieves 85% accuracy, which is improved over a classic LSTM structure, trained on the same data.

Original languageEnglish
Title of host publication2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728141497
DOIs
Publication statusPublished - 20 Sept 2020
Event23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020 - Rhodes, Greece
Duration: 20 Sept 202023 Sept 2020

Publication series

Name2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

Conference

Conference23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Country/TerritoryGreece
CityRhodes
Period20/09/2023/09/20

Fingerprint

Dive into the research topics of 'Dilated LSTM Networks for Short-Term Traffic Forecasting using Network-Wide Vehicle Trajectory Data'. Together they form a unique fingerprint.

Cite this