Dual refractive index and viscosity sensing using polymeric nanofibers optical structures

Salvador Ponce-Alcantara, David Martin-Sanchez, Miroslavna Kovylina, Ana Perez-Marquez, Jon Maudes, Nieves Murillo, Jaime Garcia-Ruperez

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Porous materials have demonstrated to be ideal candidates for the creation of optical sensors with very high sensitivities. This is due both to the possibility of infiltrating the target substances into them and to their notable surface-to-volume ratio that provides a larger biosensing area. Among porous structures, polymeric nanofibers (NFs) layers fabricated by electrospinning have emerged as a very promising alternative for the creation of low-cost and easy-to-produce high performance optical sensors, for example, based on Fabry-Perot (FP) interferometers. However, the sensing performance of these polymeric NFs sensors is limited by the low refractive index contrast between the NFs porous structure and the target medium when performing in-liquid sensing experiments, which determines a very low amplitude of the FP interference fringes appearing in the spectrum. This problem has been solved with the deposition of a thin metal layer (∼ 3 nm) over the NFs sensing layer. We have successfully used these metal-coated FP NFs sensors to perform several real-time and in-flow refractive index sensing experiments. From these sensing experiments, we have also determined that the sponge-like structure of the NFs layer suffers an expansion/compression process that is dependent of the viscosity of the analyzed sample, what thus gives the possibility to perform a simultaneous dual sensing of refractive index and viscosity of a fluid.
Original languageEnglish
Article number8822459
Pages (from-to)11850-11857
Number of pages8
JournalIEEE Sensors Journal
Volume19
Issue number24
DOIs
Publication statusPublished - 15 Dec 2019

Keywords

  • Fabry-Perot
  • Nanofibers layer
  • Nanophotonics
  • Polymers
  • Porous structure
  • Real-time sensor
  • Refractive index
  • Viscosity

Fingerprint

Dive into the research topics of 'Dual refractive index and viscosity sensing using polymeric nanofibers optical structures'. Together they form a unique fingerprint.

Cite this