Evaluation of filtering techniques to extract movement intention information from low-frequency EEG activity

Carlos Bibian*, Eduardo Lopez-Larraz, Nerea Irastorza-Landa, Niels Birbaumer, Ander Ramos-Murguialday

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Low-frequency electroencephalographic (EEG) activity provides relevant information for decoding movement commands in healthy subjects and paralyzed patients. Brainmachine interfaces (BMI) exploiting these signals have been developed to provide closed-loop feedback and induce neuroplasticity. Several offline and online studies have already demonstrated that discriminable information related to movement can be decoded from low-frequency EEG activity. However, there is still not a well-established procedure to guarantee that this activity is optimally filtered from the background noise. This work compares different configurations of non-causal (i.e., offline) and causal (i.e., online) filters to classify movement-related cortical potentials (MRCP) with six healthy subjects during reaching movements. Our results reveal important differences in MRCP decoding accuracy dependent on the selected frequency band for both offline and online approaches. In summary, this paper underlines the importance of optimally choosing filter parameters, since their variable response has an impact on the classification of low EEG frequencies for BMI.

Original languageEnglish
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2960-2963
Number of pages4
ISBN (Electronic)9781509028092
DOIs
Publication statusPublished - 13 Sept 2017
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: 11 Jul 201715 Jul 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
Country/TerritoryKorea, Republic of
CityJeju Island
Period11/07/1715/07/17

Fingerprint

Dive into the research topics of 'Evaluation of filtering techniques to extract movement intention information from low-frequency EEG activity'. Together they form a unique fingerprint.

Cite this