TY - JOUR
T1 - Human-Robot Collaboration as a new paradigm in circular economy for WEEE management
AU - Renteria, Arantxa
AU - Alvarez-de-los-Mozos, Esther
N1 - Publisher Copyright:
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
PY - 2019
Y1 - 2019
N2 - E-waste is a priority waste stream as identified by the European Commission due to fast technological changes and eagerness of consumers to acquire new products. The value chain of the Waste on Electric and Electronic Equipment (WEEE) has to face several challenges: the EU directives requesting collection targets for 2019–2022, the costs of disassembly processes which is highly dependent on the applied technology and type of discarded device, and the sale of the obtained components and/or raw materials, with market prices varying according to uncontrolled variables at world level. This paper presents a human-robot collaboration for a recycling process where tasks are opportunistically assigned to either a human-being or a robot depending on the condition of the discarded electronic device. This solution presents some important advantages; i.e. tedious and dangerous tasks are assigned to robots whereas more value-added tasks are allocated to humans, thus preserving jobs and increasing job satisfaction. Furthermore, first results from a prototype show greater productivity and profitable projected investment.
AB - E-waste is a priority waste stream as identified by the European Commission due to fast technological changes and eagerness of consumers to acquire new products. The value chain of the Waste on Electric and Electronic Equipment (WEEE) has to face several challenges: the EU directives requesting collection targets for 2019–2022, the costs of disassembly processes which is highly dependent on the applied technology and type of discarded device, and the sale of the obtained components and/or raw materials, with market prices varying according to uncontrolled variables at world level. This paper presents a human-robot collaboration for a recycling process where tasks are opportunistically assigned to either a human-being or a robot depending on the condition of the discarded electronic device. This solution presents some important advantages; i.e. tedious and dangerous tasks are assigned to robots whereas more value-added tasks are allocated to humans, thus preserving jobs and increasing job satisfaction. Furthermore, first results from a prototype show greater productivity and profitable projected investment.
KW - Collaborative robots
KW - e-waste
KW - Circular economy
KW - Collaborative robots
KW - e-waste
KW - Circular economy
UR - http://www.scopus.com/inward/record.url?scp=85083530645&partnerID=8YFLogxK
U2 - 10.1016/j.promfg.2020.01.048
DO - 10.1016/j.promfg.2020.01.048
M3 - Conference article
SN - 2351-9789
VL - 38
SP - 375
EP - 382
JO - Procedia Manufacturing
JF - Procedia Manufacturing
T2 - 29th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2019
Y2 - 24 June 2019 through 28 June 2019
ER -