Hybridizing differential evolution and novelty search for multimodal optimization problems

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Multimodal optimization has shown to be a complex paradigm underneath real-world problems arising in many practical applications, with particular prevalence in physics-related domains. Among them, a plethora of cases within the computational design of aerospace structures can be modeled as a multimodal optimization problem, such as aerodynamic optimization or airfoils and wings. This work aims at presenting a new research direction towards efficiently tackling this kind of optimization problems, which pursues the discovery of the multiple (at least locally optimal) solutions of a given optimization problem. Specifically, we propose to exploit the concept behind the so-called Novelty Search mechanism and embed it into the self-adaptive Differential Evolution algorithm so as to gain an increased level of controlled diversity during the search process. We assess the performance of the proposed solver over the well-known CEC'2013 suite of multimodal test functions. The obtained outcomes of the designed experimentation supports our claim that Novelty Search is a promising approach for heuristically addressed multimodal problems.

Original languageEnglish
Title of host publicationGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion
PublisherAssociation for Computing Machinery, Inc
Pages1980-1989
Number of pages10
ISBN (Electronic)9781450367486
DOIs
Publication statusPublished - 13 Jul 2019
Event2019 Genetic and Evolutionary Computation Conference, GECCO 2019 - Prague, Czech Republic
Duration: 13 Jul 201917 Jul 2019

Publication series

NameGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2019 Genetic and Evolutionary Computation Conference, GECCO 2019
Country/TerritoryCzech Republic
CityPrague
Period13/07/1917/07/19

Keywords

  • Differential Evolution
  • Multimodal Optimization
  • Novelty Search

Fingerprint

Dive into the research topics of 'Hybridizing differential evolution and novelty search for multimodal optimization problems'. Together they form a unique fingerprint.

Cite this