Laser Dissimilar Joining of Al7075T6 with Glass-Fiber-Reinforced Polyamide Composite

Eneko Ukar, Jon Iñaki Arrizubieta, Mercedes Ferros, Maite Andres, Fernando Liebana

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Dissimilar joining between metal and composite sheets is usually carried out by mechanical or adhesive joining. Laser dissimilar joining between metal and composite sheets could be an alternative to these methods, as it is a cost-effective and versatile joining technique. Previously, textured metallic and composite parts have been held together and heated with a laser beam while pressure is applied to allow the melted polymer to flow into the cavities of the metal part. The main issue of this process relates to reaching the same joint strength repetitively with appropriate process parameters. In this work, both initial texturing and laser joining parameters are studied for Al 7075-T6 and glass-fiber-reinforced PA6 composite. A groove-based geometry was studied in terms of depth-to-width aspect ratio to find an optimal surface using a nanosecond fiber laser for texturing. Laser joining parameters were also studied with different combinations of surface temperature, heating strategy, pressure, and laser feed rate. The results are relatively good for grooves with aspect ratios from 0.94 to 4.15, with the widths of the grooves being the most critical factor. In terms of joining parameters, surface reference temperature was found to be the most influential parameter. Underheating does not allow correct material flow in textured cavities, while overheating also causes high dispersion in the resulting shear strength. When optimal parameters are applied using correct textures, shear strength values over 26 kN are reached, with a contact area of 35 × 45 mm2.
Original languageEnglish
Article number96
Pages (from-to)96
Number of pages1
JournalCoatings
Volume10
Issue number2
DOIs
Publication statusPublished - 22 Jan 2020

Keywords

  • Laser direct joining
  • Laser structuring
  • Metal polymer joint
  • Groove aspect ratio
  • Shear strength
  • Laser structuring;metal polymer joint

Project and Funding Information

  • Funding Info
  • This research was funded by the Basque Government grant number KK-2017/00088.

Fingerprint

Dive into the research topics of 'Laser Dissimilar Joining of Al7075T6 with Glass-Fiber-Reinforced Polyamide Composite'. Together they form a unique fingerprint.

Cite this