TY - GEN
T1 - Laser polishing parameter optimization for die and moulds surface finishing
AU - Ukar, E.
AU - Lamikiz, A.
AU - López De Lacalle, L. N.
AU - Liebana, F.
AU - Etayo, J. M.
PY - 2009
Y1 - 2009
N2 - Final polishing operation for die and mould manufacturing represents up to 30% of the total manufacturing cost and it is a high added value operation carried out manually by qualified personnel. The work presented in this paper proposes an automated solution for this task by the process known as Laser Polishing. This process is based on the application of a laser beam melting a microscopic layer of material, which lately solidifies filling the gaps, and smoothing the overall topography. Several Laser Polishing tests have been done with C02 and High Power Diode Lasers (HPDL) on two different materials commonly used in die and mould industry: a DIN 1,2379 Tool Steel tempered up to 62HRC, used for injection moulds inserts, and a spheroidal graphite Cast Iron DIN GGG70L used typically on large stamping dies manufacturing. By means of the tests and Design of Experiments (DoE) technique, the operation parameters for the Laser Polishing process as well as its degree of influence in the melted surface have been defined. Starting off from an initial surface obtained by means of High Speed Milling operation, it has been possible to obtain satisfactory results with final roughness reductions higher than 80% with respect to the initial values, and mean roughness values below 0.8um Ra.
AB - Final polishing operation for die and mould manufacturing represents up to 30% of the total manufacturing cost and it is a high added value operation carried out manually by qualified personnel. The work presented in this paper proposes an automated solution for this task by the process known as Laser Polishing. This process is based on the application of a laser beam melting a microscopic layer of material, which lately solidifies filling the gaps, and smoothing the overall topography. Several Laser Polishing tests have been done with C02 and High Power Diode Lasers (HPDL) on two different materials commonly used in die and mould industry: a DIN 1,2379 Tool Steel tempered up to 62HRC, used for injection moulds inserts, and a spheroidal graphite Cast Iron DIN GGG70L used typically on large stamping dies manufacturing. By means of the tests and Design of Experiments (DoE) technique, the operation parameters for the Laser Polishing process as well as its degree of influence in the melted surface have been defined. Starting off from an initial surface obtained by means of High Speed Milling operation, it has been possible to obtain satisfactory results with final roughness reductions higher than 80% with respect to the initial values, and mean roughness values below 0.8um Ra.
UR - http://www.scopus.com/inward/record.url?scp=77951261250&partnerID=8YFLogxK
U2 - 10.1115/MSEC_ICMP2008-72258
DO - 10.1115/MSEC_ICMP2008-72258
M3 - Conference contribution
AN - SCOPUS:77951261250
SN - 9780791848517
T3 - Proceedings of the ASME International Manufacturing Science and Engineering Conference, MSEC2008
SP - 197
EP - 204
BT - Proceedings of the ASME International Manufacturing Science and Engineering Conference, MSEC2008
T2 - ASME International Manufacturing Science and Engineering Conference, MSEC2008
Y2 - 7 October 2008 through 10 October 2008
ER -