Material saving by means of CWR technology using optimization techniques

Iñaki Pérez, Cristina Ambrosio

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Material saving is currently a must for the forging companies, as material costs sum up to 50% for parts made of steel and up to 90% in other materials like titanium. For long products, cross wedge rolling (CWR) technology can be used to obtain forging preforms with a suitable distribution of the material along its own axis. However, defining the correct preform dimensions is not an easy task and it could need an intensive trial-and-error campaign. To speed up the preform definition, it is necessary to apply optimization techniques on Finite Element Models (FEM) able to reproduce the material behaviour when being rolled. Meta-models Assisted Evolution Strategies (MAES), that combine evolutionary algorithms with Kriging meta-models, are implemented in FORGE® software and they allow reducing optimization computation costs in a relevant way. The paper shows the application of these optimization techniques to the definition of the right preform for a shaft from a vehicle of the agricultural sector. First, the current forging process, based on obtaining the forging preform by means of an open die forging operation, is showed. Then, the CWR preform optimization is developed by using the above mentioned optimization techniques. The objective is to reduce, as much as possible, the initial billet weight, so that a calculation of flash weight reduction due to the use of the proposed preform is stated. Finally, a simulation of CWR process for the defined preform is carried out to check that most common failures (necking, spirals,.) in CWR do not appear in this case.

Original languageEnglish
Title of host publicationProceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017
EditorsDermot Brabazon, Inam Ul Ahad, Sumsun Naher
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415805
DOIs
Publication statusPublished - 16 Oct 2017
Event20th International ESAFORM Conference on Material Forming, ESAFORM 2017 - Dublin, Ireland
Duration: 26 Apr 201728 Apr 2017

Publication series

NameAIP Conference Proceedings
Volume1896
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference20th International ESAFORM Conference on Material Forming, ESAFORM 2017
Country/TerritoryIreland
CityDublin
Period26/04/1728/04/17

Fingerprint

Dive into the research topics of 'Material saving by means of CWR technology using optimization techniques'. Together they form a unique fingerprint.

Cite this