TY - JOUR
T1 - Minimum representative human body model size determination for link budget calculation in implanted medical devices
AU - Ortego-Isasa, Iñaki
AU - Rezola, Ainhoa
AU - Gao, Yue
AU - Chen, Xiaodong
AU - Valderas, Daniel
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - In this work, the optimum homogeneous phantom size for an equivalent whole-body electromagnetic (EM) modeling is calculated. This will enable the simple characterization of plane wave EM attenuation and far-field link budgets in Active Medical Implant (AMI) applications in the core region of the body for Industrial, Scientific, Medical and MedRadio frequency bands. A computational analysis is done to determine the optimum size in which a minimum phantom size reliably represents a whole-body situation for the corresponding frequency of operation, saving computer and laboratory resources. After the definition of a converge criterion, the computed minimum phantom size for subcutaneous applications, 0–10 mm insertion depth, is 355 × 160 × 255 mm3 for 402 MHz and 868 MHz and a cube with a side of 100 mm and 50 mm for 2.45 GHz and 5.8 GHz, respectively. For deep AMI applications, 10–50 mm insertion depth, the dimensions are 355 × 260 × 255 mm3 for 402 MHz and 868 MHz, and a cube with a side of 200 mm and 150 mm for 2.45 GHz and 5.8 GHz, respectively. A significant reduction in both computational and manufacturing resources for phantom development is thereby achieved. The verification of the model is performed by field measurements in phantoms made by aqueous solutions with sugar.
AB - In this work, the optimum homogeneous phantom size for an equivalent whole-body electromagnetic (EM) modeling is calculated. This will enable the simple characterization of plane wave EM attenuation and far-field link budgets in Active Medical Implant (AMI) applications in the core region of the body for Industrial, Scientific, Medical and MedRadio frequency bands. A computational analysis is done to determine the optimum size in which a minimum phantom size reliably represents a whole-body situation for the corresponding frequency of operation, saving computer and laboratory resources. After the definition of a converge criterion, the computed minimum phantom size for subcutaneous applications, 0–10 mm insertion depth, is 355 × 160 × 255 mm3 for 402 MHz and 868 MHz and a cube with a side of 100 mm and 50 mm for 2.45 GHz and 5.8 GHz, respectively. For deep AMI applications, 10–50 mm insertion depth, the dimensions are 355 × 260 × 255 mm3 for 402 MHz and 868 MHz, and a cube with a side of 200 mm and 150 mm for 2.45 GHz and 5.8 GHz, respectively. A significant reduction in both computational and manufacturing resources for phantom development is thereby achieved. The verification of the model is performed by field measurements in phantoms made by aqueous solutions with sugar.
KW - Biomedical applications of electromagnetic radiation
KW - Biomedical computing
KW - Biomedical measurements
KW - Electromagnetic propagation in absorbing media
KW - Implantable biomedical devices
UR - http://www.scopus.com/inward/record.url?scp=85109790663&partnerID=8YFLogxK
U2 - 10.3390/app11136032
DO - 10.3390/app11136032
M3 - Article
AN - SCOPUS:85109790663
SN - 2076-3417
VL - 11
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 13
M1 - 6032
ER -