TY - GEN
T1 - Multi-step Ahead Visual Trajectory Prediction for Object Tracking using Echo State Networks
AU - Manibardo, Eric L.
AU - Laña, Ibai
AU - Del Ser, Javier
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - One of the main applications of multi-object tracking in the context of autonomous driving is improving road safety. An accurate environment understanding where pedestrians and vehicles are correctly identified reduce the risk of an accident while driving. However, occlusions produce identification switches and detection errors, which may involve losing track of an object in the images captured by the vehicle. In this context, tracking by detection is the leading solution. Trackers following this architecture employ a Kalman filter for predicting an object location, encoded as a bounding box within the image boundaries. Having access to a posterior state prediction provides useful information for dealing with occlusions. Unfortunately, the Kalman filter is not designed for producing multi-step ahead predictions. In this work we propose the use of Echo State Networks, (ESN) as a modeling alternative to the Kalman filter. Their recursive nature makes ESNs suited for modeling movement patterns of the bounding boxes detected in the image. Performance results are computed by isolating the motion modules from the tracker itself: a perfect object detector is assumed to enable a detailed analysis of the prediction capabilities of each model over specific object tracks and time slots. Experimental results verify the potential of ESNs for accurate multi-step ahead visual motion prediction. The virtual trajectories delineated by the predicted bounding boxes provide valuable information for anticipating occlusions.
AB - One of the main applications of multi-object tracking in the context of autonomous driving is improving road safety. An accurate environment understanding where pedestrians and vehicles are correctly identified reduce the risk of an accident while driving. However, occlusions produce identification switches and detection errors, which may involve losing track of an object in the images captured by the vehicle. In this context, tracking by detection is the leading solution. Trackers following this architecture employ a Kalman filter for predicting an object location, encoded as a bounding box within the image boundaries. Having access to a posterior state prediction provides useful information for dealing with occlusions. Unfortunately, the Kalman filter is not designed for producing multi-step ahead predictions. In this work we propose the use of Echo State Networks, (ESN) as a modeling alternative to the Kalman filter. Their recursive nature makes ESNs suited for modeling movement patterns of the bounding boxes detected in the image. Performance results are computed by isolating the motion modules from the tracker itself: a perfect object detector is assumed to enable a detailed analysis of the prediction capabilities of each model over specific object tracks and time slots. Experimental results verify the potential of ESNs for accurate multi-step ahead visual motion prediction. The virtual trajectories delineated by the predicted bounding boxes provide valuable information for anticipating occlusions.
UR - http://www.scopus.com/inward/record.url?scp=85186520211&partnerID=8YFLogxK
U2 - 10.1109/ITSC57777.2023.10422485
DO - 10.1109/ITSC57777.2023.10422485
M3 - Conference contribution
AN - SCOPUS:85186520211
T3 - IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
SP - 4782
EP - 4789
BT - 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Y2 - 24 September 2023 through 28 September 2023
ER -