On the design of EEG-based movement decoders for completely paralyzed stroke patients

Martin Spüler, Eduardo López-Larraz, Ander Ramos-Murguialday

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
1 Downloads (Pure)

Abstract

Background: Brain machine interface (BMI) technology has demonstrated its efficacy for rehabilitation of paralyzed chronic stroke patients. The critical component in BMI-training consists of the associative connection (contingency) between the intention and the feedback provided. However, the relationship between the BMI design and its performance in stroke patients is still an open question. Methods: In this study we compare different methodologies to design a BMI for rehabilitation and evaluate their effects on movement intention decoding performance. We analyze the data of 37 chronic stroke patients who underwent 4 weeks of BMI intervention with different types of association between their brain activity and the proprioceptive feedback. We simulate the pseudo-online performance that a BMI would have under different conditions, varying: (1) the cortical source of activity (i.e., ipsilesional, contralesional, bihemispheric), (2) the type of spatial filter applied, (3) the EEG frequency band, (4) the type of classifier; and also evaluated the use of residual EMG activity to decode the movement intentions. Results: We observed a significant influence of the different BMI designs on the obtained performances. Our results revealed that using bihemispheric beta activity with a common average reference and an adaptive support vector machine led to the best classification results. Furthermore, the decoding results based on brain activity were significantly higher than those based on muscle activity. Conclusions: This paper underscores the relevance of the different parameters used to decode movement, using EEG in severely paralyzed stroke patients. We demonstrated significant differences in performance for the different designs, which supports further research that should elucidate if those approaches leading to higher accuracies also induce higher motor recovery in paralyzed stroke patients.
Original languageEnglish
Article number110
Pages (from-to)110
Number of pages1
JournalJournal of NeuroEngineering and Rehabilitation
Volume15
Issue number1
DOIs
Publication statusPublished - 20 Nov 2018

Keywords

  • Neuroprostheses
  • Brain machine interface (BMI)
  • Rehabilitation robotics
  • Proprioceptive feedback
  • Motor rehabilitation
  • Stroke
  • Neurotechnology
  • Proprioceptive feedback, motor rehabilitation, stroke, Neurotechnology

Project and Funding Information

  • Funding Info
  • This study was funded by the Baden-Württemberg Stiftung (GRUENS ROB-1),_x000D_ the Deutsche Forschungsgemeinschaft (DFG, Koselleck and Grant SP 1533/2–_x000D_ 1), the Bundesministerium für Bildung und Forschung BMBF: MOTORBIC (FKZ_x000D_ 13GW0053) and AMORSA (FKZ 16SV7754), the fortüne-Program of the University_x000D_ of Tübingen (2422-0-1 and 2452-0-0) and the Basque Government Science_x000D_ Program (EXOTEK: KK 2016/00083).

Fingerprint

Dive into the research topics of 'On the design of EEG-based movement decoders for completely paralyzed stroke patients'. Together they form a unique fingerprint.

Cite this