Performance of optimization algorithms in the model fitting of the multi-scale numerical simulation of ductile iron solidification

Eva Anglada, Antton Meléndez, Alejandro Obregón, Ester Villanueva, Iñaki Garmendia

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
2 Downloads (Pure)

Abstract

The use of optimization algorithms to adjust the numerical models with experimental values has been applied in other fields, but the efforts done in metal casting sector are much more limited. The advances in this area may contribute to get metal casting adjusted models in less time improving the confidence in their predictions and contributing to reduce tests at laboratory scale. This work compares the performance of four algorithms (compass search, NEWUOA, genetic algorithm (GA) and particle swarm optimization (PSO)) in the adjustment of the metal casting simulation models. The case study used in the comparison is the multiscale simulation of the hypereutectic ductile iron (SGI) casting solidification. The model fitting criteria is the value of the tensile strength. Four different situations have been studied: model fitting based in 2, 3, 6 and 10 variables. Compass search and PSO have succeeded in reaching the error target in the four cases studied, while NEWUOA and GA have failed in some cases. In the case of the deterministic algorithms, compass search and NEWUOA, the use of a multiple random initial guess has been clearly beneficious.

Original languageEnglish
Article number1071
Pages (from-to)1-18
Number of pages18
JournalMetals
Volume10
Issue number8
DOIs
Publication statusPublished - 8 Aug 2020

Keywords

  • Compass search
  • FEM
  • Genetic algorithm
  • Metal casting
  • Model fitting
  • NEWUOA
  • Numerical simulation
  • Optimization
  • Particle swarm optimization
  • SGI

Project and Funding Information

  • Funding Info
  • This research was funded by the Basque Government under the ELKARTEK Program (ARGIA Project,_x000D_ELKARTEK KK-2019/00068) and by the HAZITEK Program (CASTMART Project, HAZITEK ZL-2019/00562).

Fingerprint

Dive into the research topics of 'Performance of optimization algorithms in the model fitting of the multi-scale numerical simulation of ductile iron solidification'. Together they form a unique fingerprint.

Cite this