@inproceedings{610d5bf12ce74147bd52ea5f97499bb7,
title = "Prediction of Metabolic Syndrome Based on Machine Learning Techniques with Emphasis on Feature Relevances and Explainability Analysis",
abstract = "Metabolic syndrome (MetS) is considered to be a major public health problem worldwide leading to a high risk of diabetes and cardiovascular diseases. In this paper, data collected by the Precision Medicine Initiative of the Basque Country, named the AKRIBEA project, is employed to infer via Machine Learning (ML) techniques the features that have the most influence on predicting MetS in the general case and also separately by gender. Different Feature Normalization (FN) and Feature Weighting (FW) methods are applied and an exhaustive analysis of explainability by means of Shapley Additive Explanations (SHAP) and feature relevance methods is performed. Validation results show that the Extreme Gradient Boosting (XGB) with Min-Max FN and Mutual Information FW achieves the best trade-off between precision and recall performance metrics.",
keywords = "classification, explainability, feature relevances, machine learning, metabolic syndrome",
author = "Bego{\~n}a Ispizua and Diana Manjarr{\'e}s and Iratxe Ni{\~n}o-Adan",
note = "Publisher Copyright: {\textcopyright} 2023 IEEE.; 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023 ; Conference date: 05-12-2023 Through 08-12-2023",
year = "2023",
doi = "10.1109/BIBM58861.2023.10385780",
language = "English",
series = "Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1989--1992",
editor = "Xingpeng Jiang and Haiying Wang and Reda Alhajj and Xiaohua Hu and Felix Engel and Mufti Mahmud and Nadia Pisanti and Xuefeng Cui and Hong Song",
booktitle = "Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023",
address = "United States",
}