Predictive Maintenance of Floating Offshore Wind Turbine Mooring Lines using Deep Neural Networks

N Gorostidi, V Nava, A Aristondo, D Pardo

Research output: Contribution to journalConference articlepeer-review

9 Citations (Scopus)

Abstract

The recent massive deployment of onshore wind farms has caused controversy to arise mainly around the issues of land occupation, noise and visual pollution and impact on wildlife. Fixed offshore turbines, albeit beneficial in those aspects, become economically unfeasible when installed far away from coastlines. The possibility of installing floating offshore wind turbines is currently hindered by their excessive operation and maintenance costs. We have developed a comprehensive model to help companies plan their operations in advance by detecting failure in mooring lines in almost real time using supervised deep learning techniques. Given the lack of real data, we have coupled numerical methods and OpenFAST simulations to build a dataset containing the displacements and rotations of a turbine's floating platform across all directions. These time series and their corresponding frequency spectra are used to obtain a set of key statistical parameters, including means and standard deviations, peak frequencies, and several relevant momenta. We have designed and trained a Deep Neural Network to understand and distinguish amongst a series of common failure modes for mooring lines considering a range of metocean and structural conditions. We have obtained promising results when monitoring severe changes in the line's mass and damping using short time spans, achieving a 95.7% validation accuracy when detecting severe biofouling failure.
Original languageEnglish
Article number012008
Pages (from-to)12008
Number of pages1
JournalJournal of Physics: Conference Series
Volume2257
Issue number1
DOIs
Publication statusPublished - 13 May 2022
EventWindEurope Annual Event 2022 Conference - Bilbao, Spain
Duration: 5 Apr 20227 Apr 2022

Keywords

  • Floating offshore wind turbine mooring lines
  • Deep Neural Networks

Project and Funding Information

  • Funding Info
  • N Gorostidi has received funding from the Spanish Ministry of Science and Innovation project DEEPINVERSE, with reference PID2019-108111RB-I00 (FEDER/AEI). V Nava has received funding from the project IA4TES - Inteligencia Artificial para la Transición Energética Sostenible funded by Ministry of Economic Affairs and Digital Transformation (MIA.2021.M04.0008); the “BCAM Severo Ochoa” accreditation of excellence (SEV-2017-0718); and the Basque Government through the BERC 2022-2025 program, the Elkartek project EXPERTIA (KK-2021/00048).

Fingerprint

Dive into the research topics of 'Predictive Maintenance of Floating Offshore Wind Turbine Mooring Lines using Deep Neural Networks'. Together they form a unique fingerprint.

Cite this