Abstract
The recent massive deployment of onshore wind farms has caused controversy to arise mainly around the issues of land occupation, noise and visual pollution and impact on wildlife. Fixed offshore turbines, albeit beneficial in those aspects, become economically unfeasible when installed far away from coastlines. The possibility of installing floating offshore wind turbines is currently hindered by their excessive operation and maintenance costs. We have developed a comprehensive model to help companies plan their operations in advance by detecting failure in mooring lines in almost real time using supervised deep learning techniques. Given the lack of real data, we have coupled numerical methods and OpenFAST simulations to build a dataset containing the displacements and rotations of a turbine's floating platform across all directions. These time series and their corresponding frequency spectra are used to obtain a set of key statistical parameters, including means and standard deviations, peak frequencies, and several relevant momenta. We have designed and trained a Deep Neural Network to understand and distinguish amongst a series of common failure modes for mooring lines considering a range of metocean and structural conditions. We have obtained promising results when monitoring severe changes in the line's mass and damping using short time spans, achieving a 95.7% validation accuracy when detecting severe biofouling failure.
Original language | English |
---|---|
Article number | 012008 |
Pages (from-to) | 12008 |
Number of pages | 1 |
Journal | Journal of Physics: Conference Series |
Volume | 2257 |
Issue number | 1 |
DOIs | |
Publication status | Published - 13 May 2022 |
Event | WindEurope Annual Event 2022 Conference - Bilbao, Spain Duration: 5 Apr 2022 → 7 Apr 2022 |
Keywords
- Floating offshore wind turbine mooring lines
- Deep Neural Networks
Project and Funding Information
- Funding Info
- N Gorostidi has received funding from the Spanish Ministry of Science and Innovation project DEEPINVERSE, with reference PID2019-108111RB-I00 (FEDER/AEI). V Nava has received funding from the project IA4TES - Inteligencia Artificial para la Transición Energética Sostenible funded by Ministry of Economic Affairs and Digital Transformation (MIA.2021.M04.0008); the “BCAM Severo Ochoa” accreditation of excellence (SEV-2017-0718); and the Basque Government through the BERC 2022-2025 program, the Elkartek project EXPERTIA (KK-2021/00048).