Processing of carbon nanofiber reinforced ZrB2 matrix composites for aerospace applications

Jorge Barcena*, Javier Coleto, Shi C. Zhang, Gregory E. Hilmas, William G. Fahrenholtz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Ceramic matrix composites (CMCs) based on zirconium diboride (ZrB 2) reinforced by vapor grown carbon nanofibers are a potential constituent of reusable thermal protection systems. A manufacturing procedure was devised that involved the fabrication of thin films by tape casting to obtain a layer that could be integrated into a more complex system. Higher thermal conductivities and improved toughness can be expected for nanofiber additions, as compared to the matrix alone. Consolidation by hot-pressing was more effective than pressureless sintering, in terms of the final relative density and flatness of specimens. Examination of microstructures showed that few carbon nanofibers were present in the matrix after consolidation by sintering, which was attributed to a reaction between the nanofibers and zirconium oxide present on the surface of the ZrB2 powder. As a solution, oxygen impurities from the boride powders were removed by reduction with carbon coatings derived from phenolic resin. The deleterious reaction was avoided, but residual carbon remained at the grain boundaries, likely from decomposition of the binder. The use of an alternative binder (PMMA vs. PVB) will be used in future studies to reduce the residual carbon content. Further, consolidation by Spark Plasma Sintering (SPS) will be explored to further reduce the reaction of surface oxides with the nanofibers. Finally, characterization of the microstructure at the nanometric level and further determination of the mechanical and thermal properties will be conducted as part of future studies.

Original languageEnglish
Pages (from-to)623-626
Number of pages4
JournalAdvanced Engineering Materials
Volume12
Issue number7
DOIs
Publication statusPublished - Jul 2010

Fingerprint

Dive into the research topics of 'Processing of carbon nanofiber reinforced ZrB2 matrix composites for aerospace applications'. Together they form a unique fingerprint.

Cite this