Regulating Grip Forces through EMG-Controlled Protheses for Transradial Amputees

Irati Rasines, Miguel Prada, Viacheslav Bobrov, Dhruv Agrawal, Leire Martinez, Pedro Iriondo, Anthony Remazeilles, Joseph McIntyre

Research output: Contribution to journalArticlepeer-review

Abstract

This study aims to evaluate different combinations of features and algorithms to be used in the control of a prosthetic hand wherein both the configuration of the fingers and the gripping forces can be controlled. This requires identifying machine learning algorithms and feature sets to detect both intended force variation and hand gestures in EMG signals recorded from upper-limb amputees. However, despite the decades of research into pattern recognition techniques, each new problem requires researchers to find a suitable classification algorithm, as there is no such thing as a universal ’best’ solution. Consideration of different techniques and data representation represents a fundamental practice in order to achieve maximally effective results. To this end, we employ a publicly-available database recorded from amputees to evaluate different combinations of features and classifiers. Analysis of data from 9 different individuals shows that both for classic features and for time-dependent power spectrum descriptors (TD-PSD) the proposed logarithmically scaled version of the current window plus previous window achieves the highest classification accuracy. Using linear discriminant analysis (LDA) as a classifier and applying a majority-voting strategy to stabilize the individual window classification, we obtain 88% accuracy with classic features and 89% with TD-PSD features.
Original languageEnglish
Article number11199
Pages (from-to)11199
Number of pages1
JournalApplied Sciences
Volume11
Issue number23
DOIs
Publication statusPublished - 25 Nov 2021

Keywords

  • Classification
  • Force level variation
  • Myoelectric control
  • Pattern recognition
  • Robustness
  • Surface electromyogram (sEMG)
  • Transradial amputees

Project and Funding Information

  • Project ID
  • info:eu-repo/grantAgreement/EC/H2020/779967/EU/Stimulate ScaleUps to develop novel and challenging TEchnology and systems applicable to new Markets for ROBOtic soLUTIONs/RobotUnion
  • Funding Info
  • This paper is supported by European Union’s Horizon 2020 research and innovation programme under the Grant Agreement no 779967, project RobotUnion.

Fingerprint

Dive into the research topics of 'Regulating Grip Forces through EMG-Controlled Protheses for Transradial Amputees'. Together they form a unique fingerprint.

Cite this