TY - GEN
T1 - Simultaneously Evolving Deep Reinforcement Learning Models using Multifactorial optimization
AU - Martinez, Aritz D.
AU - Osaba, Eneko
AU - Sery, Javier Del
AU - Herrera, Francisco
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - In recent years, Multifactorial optimization (MFO) has gained a notable momentum in the research community. MFO is known for its inherent capability to efficiently address multiple optimization tasks at the same time, while transferring information among such tasks to improve their convergence speed. On the other hand, the quantum leap made by Deep Q Learning (DQL) in the Machine Learning field has allowed facing Reinforcement Learning (RL) problems of unprecedented complexity. Unfortunately, complex DQL models usually find it difficult to converge to optimal policies due to the lack of exploration or sparse rewards. In order to overcome these drawbacks, pre-trained models are widely harnessed via Transfer Learning, extrapolating knowledge acquired in a source task to the target task. Besides, meta-heuristic optimization has been shown to reduce the lack of exploration of DQL models. This work proposes a MFO framework capable of simultaneously evolving several DQL models towards solving interrelated RL tasks. Specifically, our proposed framework blends together the benefits of meta-heuristic optimization, Transfer Learning and DQL to automate the process of knowledge transfer and policy learning of distributed RL agents. A thorough experimentation is presented and discussed so as to assess the performance of the framework, its comparison to the traditional methodology for Transfer Learning in terms of convergence, speed and policy quality, and the intertask relationships found and exploited over the search process.
AB - In recent years, Multifactorial optimization (MFO) has gained a notable momentum in the research community. MFO is known for its inherent capability to efficiently address multiple optimization tasks at the same time, while transferring information among such tasks to improve their convergence speed. On the other hand, the quantum leap made by Deep Q Learning (DQL) in the Machine Learning field has allowed facing Reinforcement Learning (RL) problems of unprecedented complexity. Unfortunately, complex DQL models usually find it difficult to converge to optimal policies due to the lack of exploration or sparse rewards. In order to overcome these drawbacks, pre-trained models are widely harnessed via Transfer Learning, extrapolating knowledge acquired in a source task to the target task. Besides, meta-heuristic optimization has been shown to reduce the lack of exploration of DQL models. This work proposes a MFO framework capable of simultaneously evolving several DQL models towards solving interrelated RL tasks. Specifically, our proposed framework blends together the benefits of meta-heuristic optimization, Transfer Learning and DQL to automate the process of knowledge transfer and policy learning of distributed RL agents. A thorough experimentation is presented and discussed so as to assess the performance of the framework, its comparison to the traditional methodology for Transfer Learning in terms of convergence, speed and policy quality, and the intertask relationships found and exploited over the search process.
KW - Deep Reinforcement Learning
KW - Evolutionary Algorithm
KW - Multifactorial optimization
KW - Transfer Learning
UR - http://www.scopus.com/inward/record.url?scp=85089741571&partnerID=8YFLogxK
U2 - 10.1109/CEC48606.2020.9185667
DO - 10.1109/CEC48606.2020.9185667
M3 - Conference contribution
AN - SCOPUS:85089741571
T3 - 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
BT - 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Congress on Evolutionary Computation, CEC 2020
Y2 - 19 July 2020 through 24 July 2020
ER -