Abstract
In hydrogen production, the syngas streams produced by reformers and/or coal gasification plants contain a large amount of H2 and CO in need of upgrading. To this purpose, reactors using Pd-based membranes have been widely studied as they allow separation and recovery of a pure hydrogen stream. However, the high cost of Pd-membranes is one of the main limitations for scaling up technology. Therefore, many researchers are now pursuing the possibility of using supported membranes with as thin as possible Pd-alloy layers. In this work, the upgrading of a syngas stream is experimentally investigated in a water gas shift membrane reactor operated in a high temperature range with an ultra-thin supported membrane (3.6 micron-thick). The membrane permeance was measured before and after catalyst packing and also after reaction for 2100 h of operation in total. Membrane reactor performance was evaluated as a function of operating conditions such as temperature, pressure, gas hourly space velocity, feed molar ratio, and sweep gas. A CO conversion significantly higher than the thermodynamics upper limit of a traditional reactor was achieved, even at high gas hourly space velocities and a 25% less reaction volume than that of a traditional reactor was enough to achieve a 90% equilibrium conversion.
Original language | English |
---|---|
Pages (from-to) | 10883-10893 |
Number of pages | 11 |
Journal | International Journal of Hydrogen Energy |
Volume | 40 |
Issue number | 34 |
DOIs | |
Publication status | Published - 14 Sept 2015 |
Keywords
- Hydrogen production
- Membrane reactor
- Pd-based membrane
- Water gas shift
Project and Funding Information
- Project ID
- info:eu-repo/grantAgreement/EC/FP7/262840/EU/Design and Manufacturing of Catalytic Membrane Reactors by developing new nano-architectured catalytic and selective membrane materials/DEMCAMER