Testing and control of a power take-off system for an oscillating-water-column wave energy converter

J. C.C. Henriques, R. P.F. Gomes, L. M.C. Gato, A. F.O. Falcão, E. Robles, S. Ceballos

Research output: Contribution to journalArticlepeer-review

71 Citations (Scopus)

Abstract

The paper concerns the development of the PTO (power take-off) control of an OWC (oscillating-water-column) spar-buoy wave energy converter. The OWC spar-buoy is an axisymmetric device consisting of a submerged vertical tail tube open at both ends, rigidly fixed to a floater that moves essentially in heave. The oscillating motion of the internal free surface relative to the floater-tube set, produced by the incident waves, makes the air flow through a novel self-rectifying air turbine: the biradial turbine. To reduce the losses of the PTO system at partial load, an electrical generator with a rated power twice the maximum expected average power conversion of the buoy was adopted. The control of the turbine-generator set under highly energetic sea-state conditions was experimentally investigated by means of tests performed in a PTO test rig. In the reported tests, the hydrodynamics of the OWC spar-buoy and the aerodynamics of the air turbine were numerically simulated in real-time and coupled with the experimental model of the turbine/electrical generator set in ahardware-in-the-loop configuration. The experimental results allowed the dynamic behaviour of the PTO to be characterized and provided validation of the proposed control algorithms that ensure operation within safe limits.

Original languageEnglish
Pages (from-to)714-724
Number of pages11
JournalRenewable Energy
Volume85
DOIs
Publication statusPublished - 1 Jan 2016

Keywords

  • Biradial turbine
  • Control
  • Oscillating-water-column
  • Power take-off
  • Spar-buoy
  • Wave energy

Fingerprint

Dive into the research topics of 'Testing and control of a power take-off system for an oscillating-water-column wave energy converter'. Together they form a unique fingerprint.

Cite this