Abstract
Transcutaneous electrical stimulation (TES) is a technique to artificially activate motor nerves and muscles. It can be used for rehabilitation or the restoration of lost motor functions, e.g., in subjects with brain or spinal cord lesions. Apart from selectively activating motor nerves and muscles, TES activates sensory fibers and pain receptors, producing discomfort and pain. Clinicians try to minimize discomfort by optimizing stimulation parameters, electrode location, and electrode size. There are some studies that found optimal electrode sizes for certain stimulation sites (e.g., gastrocnemius), however the underlying effects why certain electrode sizes are preferred by patients is not well understood. We used a TES model consisting of a finite element (FE) model and a nerve model to assess the influence of different electrode sizes on the selectivity and the perceived comfort for various anatomies. Motor thresholds calculated using the TES model were compared with motor thresholds that were obtained from measurements performed on the forearm of ten human volunteers. Results of the TES model indicate that small electrodes (0.8 × 0.8 cm2) are more comfortable for thin fat layers (0.25 cm) and superficial nerves (0.1 cm) and larger electrodes (4.1 × 4.1 cm2) are more comfortable for thicker fat layers (2 cm) and deeper nerves (1.1 cm) at a constant recruitment.
Original language | English |
---|---|
Article number | 5378632 |
Pages (from-to) | 255-262 |
Number of pages | 8 |
Journal | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
Volume | 18 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2010 |
Funding
Manuscript received December 22, 2008; revised June 23, 2009; accepted August 27, 2009. First published January 12, 2010; current version published June 09, 2010. This work was supported by the Swiss National Science Foundation (SNF) No. 205321-107904/1.
Funders | Funder number |
---|---|
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | 205321-107904/1 |
Keywords
- Comfort
- Electrode size
- Finite element model
- Transcutaneous electrical stimulation