TY - GEN
T1 - Transfer Learning and Online Learning for Traffic Forecasting under Different Data Availability Conditions
T2 - 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
AU - Manibardo, Eric L.
AU - Laña, Ibai
AU - Del Ser, Javier
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - This work aims at unveiling the potential of Transfer Learning (TL) for developing a traffic flow forecasting model in scenarios of absent data. Knowledge transfer from high-quality predictive models becomes feasible under the TL paradigm, enabling the generation of new proper models with few data. In order to explore this capability, we identify three different levels of data absent scenarios, where TL techniques are applied among Deep Learning (DL) methods for traffic forecasting. Then, traditional batch learning is compared against TL based models using real traffic flow data, collected by deployed loops managed by the City Council of Madrid (Spain). In addition, we apply Online Learning (OL) techniques, where model receives an update after each prediction, in order to adapt to traffic flow trend changes and incrementally learn from new incoming traffic data. The obtained experimental results shed light on the advantages of transfer and online learning for traffic flow forecasting, and draw practical insights on their interplay with the amount of available training data at the location of interest.
AB - This work aims at unveiling the potential of Transfer Learning (TL) for developing a traffic flow forecasting model in scenarios of absent data. Knowledge transfer from high-quality predictive models becomes feasible under the TL paradigm, enabling the generation of new proper models with few data. In order to explore this capability, we identify three different levels of data absent scenarios, where TL techniques are applied among Deep Learning (DL) methods for traffic forecasting. Then, traditional batch learning is compared against TL based models using real traffic flow data, collected by deployed loops managed by the City Council of Madrid (Spain). In addition, we apply Online Learning (OL) techniques, where model receives an update after each prediction, in order to adapt to traffic flow trend changes and incrementally learn from new incoming traffic data. The obtained experimental results shed light on the advantages of transfer and online learning for traffic flow forecasting, and draw practical insights on their interplay with the amount of available training data at the location of interest.
UR - https://www.scopus.com/pages/publications/85099666563
U2 - 10.1109/ITSC45102.2020.9294557
DO - 10.1109/ITSC45102.2020.9294557
M3 - Conference contribution
AN - SCOPUS:85099666563
T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 20 September 2020 through 23 September 2020
ER -