Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet

Jesús Fraile-Ardanuy, Sandra Castano-Solis, Roberto Álvaro-Hermana, Julia Merino, Ángela Castillo

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

Half of the global population already lives in urban areas, facing to the problem of air pollution mainly caused by the transportation system. The recently worsening of urban air quality has a direct impact on the human health. Replacing today’s internal combustion engine vehicles with electric ones in public fleets could provide a deep impact on the air quality in the cities. In this paper, real mobility information is used as decision support for the taxi fleet manager to promote the adoption of electric taxi cabs in the city of San Francisco, USA. Firstly, mobility characteristics and energy requirements of a single taxi are analyzed. Then, the results are generalized to all vehicles from the taxi fleet. An electrificability rate of the taxi fleet is generated, providing information about the number of current trips that could be performed by electric taxis without modifying the current driver mobility patterns. The analysis results reveal that 75.2% of the current taxis could be replaced by electric vehicles, considering a current standard battery capacity (24–30 kWh). This value can increase significantly (to 100%), taking into account the evolution of the price and capacity of the batteries installed in the last models of electric vehicles that are coming to the market. The economic analysis shows that the purchasing costs of an electric taxi are bigger than conventional one. However, fuel, maintenance and repair costs are much lower. Using the expected energy consumption information evaluated in this study, the total spatio-temporal demand of electric energy required to recharge the electric fleet is also calculated, allowing identifying optimal location of charging infrastructure based on realistic routing patterns. This information could also be used by the distribution system operator to identify possible reinforcement actions in the electric grid in order to promote introducing electric vehicles.
Original languageEnglish
Pages (from-to)59-70
Number of pages12
JournalEnergy Conversion and Management
Volume157
DOIs
Publication statusPublished - 1 Feb 2018

Keywords

  • Big data
  • Mobility pattern
  • GPS data
  • Electric vehicle
  • Charging stations
  • Spatial-temporal electricity demand

Fingerprint

Dive into the research topics of 'Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet'. Together they form a unique fingerprint.

Cite this