Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications

Iñigo Martínez de Alegría*, Iñigo Rozas Holgado*, Edorta Ibarra, Eider Robles, José Luís Martín

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

Unmanned underwater vehicles (UUVs) are key technologies to conduct preventive inspection and maintenance tasks in offshore renewable energy plants. Making such vehicles autonomous would lead to benefits such as improved availability, cost reduction and carbon emission minimization. However, some technological aspects, including the powering of these devices, remain with a long way to go. In this context, underwater wireless power transfer (UWPT) solutions have potential to overcome UUV powering drawbacks. Considering the relevance of this topic for offshore renewable plants, this work aims to provide a comprehensive summary of the state of the art regarding UPWT technologies. A technology intelligence study is conducted by means of a bibliographical survey. Regarding underwater wireless power transfer, the main methods are reviewed, and it is concluded that inductive wireless power transfer (IWPT) technologies have the most potential. These inductive systems are described, and their challenges in underwater environments are presented. A review of the underwater IWPT experiments and applications is conducted, and innovative solutions are listed. Achieving efficient and reliable UWPT technologies is not trivial, but significant progress is identified. Generally, the latest solutions exhibit efficiencies between 88% and 93% in laboratory settings, with power ratings reaching up to 1–3 kW. Based on the assessment, a power transfer within the range of 1 kW appears to be feasible and may be sufficient to operate small UUVs. However, work-class UUVs require at least a tenfold power increase. Thus, although UPWT has advanced significantly, further research is required to industrially establish these technologies.

Original languageEnglish
Article number2305
JournalEnergies
Volume17
Issue number10
DOIs
Publication statusPublished - May 2024

Keywords

  • autonomous underwater vehicles
  • inductive wireless power transfer
  • underwater docking stations
  • underwater wireless power transfer
  • unmanned underwater vehicles

Fingerprint

Dive into the research topics of 'Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications'. Together they form a unique fingerprint.

Cite this