X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6

Yoana Bilbao*, Juan José Trujillo, Iban Vicario, Gurutze Arruebarrena, Iñaki Hurtado, Teresa Guraya

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Newly designed multicomponent light alloys are giving rise to non-conventional microstructures that need to be thoroughly studied before determining their potential applications. In this study, the novel Al58Zn28Si8Mg6 alloy, previously studied with CALPHAD methods, was cast and heat-treated under several conditions. An analysis of the phase evolution was carried out with in situ X-ray diffraction supported by differential scanning calorimetry and electron microscopy. A total of eight phases were identified in the alloy in the temperature range from 30 to 380 °C: α-Al, α’-Al, Zn, Si, Mg2Si, MgZn2, Mg2Zn11, and SrZn13. Several thermal transitions below 360 °C were determined, and the natural precipitation of the Zn phase was confirmed after nine months. The study showed that the thermal history can strongly affect the presence of the MgZn2 and Mg2Zn11 phases. The combination of X-ray thermo-diffraction with CALPHAD methods, differential scanning calorimetry, and electron microscopy offered us a satisfactory understanding of the alloy behavior at different temperatures.

Original languageEnglish
Article number5056
JournalMaterials
Volume15
Issue number14
DOIs
Publication statusPublished - Jul 2022

Keywords

  • Al–Zn
  • Mg–Zn phases
  • X-ray thermo-diffraction
  • Zn precipitation
  • differential scanning calorimetry
  • lightweight multicomponent alloys
  • strontium modification

Fingerprint

Dive into the research topics of 'X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6'. Together they form a unique fingerprint.

Cite this