A Causal Deep Learning Framework for Traffic Forecasting

Panagiotis Fafoutellis, Ibai Laña, Javier Del Ser, Eleni I. Vlahogianni

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Inferring causal relationships from data has the potential to significantly enhance traffic forecasting and management. However, causality is often neglected in recent literature, due to the demanding processes required to infer causal links between traffic variables. In this work we resort to the novel Neural Granger method to detect the causality structure of the road network traffic of the Athens city center (Greece) based on data monitored by loop detectors. Furthermore, we show the impact of the detected causalities on the forecasting performance of hourly volumes of traffic flow data. The detected causal relations reveal the existence of strong daily traffic patterns and dependencies between locations at the perimeter and in the center of the city. In addition, the detected causal relationships allow for more efficient and accurate forecasting of future traffic conditions.

Idioma originalInglés
Título de la publicación alojada2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas5047-5053
Número de páginas7
ISBN (versión digital)9798350399462
DOI
EstadoPublicada - 2023
Evento26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Espana
Duración: 24 sept 202328 sept 2023

Serie de la publicación

NombreIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (versión impresa)2153-0009
ISSN (versión digital)2153-0017

Conferencia

Conferencia26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
País/TerritorioEspana
CiudadBilbao
Período24/09/2328/09/23

Huella

Profundice en los temas de investigación de 'A Causal Deep Learning Framework for Traffic Forecasting'. En conjunto forman una huella única.

Citar esto