A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients

Andrea Sarasola-Sanz*, Nerea Irastorza-Landa, Eduardo López-Larraz, Carlos Bibián, Florian Helmhold, Doris Broetz, Niels Birbaumer, Ander Ramos-Murguialday

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

63 Citas (Scopus)

Resumen

Including supplementary information from the brain or other body parts in the control of brain-machine interfaces (BMIs) has been recently proposed and investigated. Such enriched interfaces are referred to as hybrid BMIs (hBMIs) and have been proven to be more robust and accurate than regular BMIs for assistive and rehabilitative applications. Electromyographic (EMG) activity is one of the most widely utilized biosignals in hBMIs, as it provides a quite direct measurement of the motion intention of the user. Whereas most of the existing non-invasive EEG-EMG-hBMIs have only been subjected to offline testings or are limited to one degree of freedom (DoF), we present an EEG-EMG-hBMI that allows the simultaneous control of 7-DoFs of the upper limb with a robotic exoskeleton. Moreover, it establishes a biologically-inspired hierarchical control flow, requiring the active participation of central and peripheral structures of the nervous system. Contingent visual and proprioceptive feedback about the user's EEG and EMG activity is provided in the form of velocity modulation during functional task training. We believe that training with this closed-loop system may facilitate functional neuroplastic processes and eventually elicit a joint brain and muscle motor rehabilitation. Its usability is validated during a real-time operation session in a healthy participant and a chronic stroke patient, showing encouraging results for its application to a clinical rehabilitation scenario.

Idioma originalInglés
Título de la publicación alojada2017 International Conference on Rehabilitation Robotics, ICORR 2017
EditoresArash Ajoudani, Panagiotis Artemiadis, Philipp Beckerle, Giorgio Grioli, Olivier Lambercy, Katja Mombaur, Domen Novak, Georg Rauter, Carlos Rodriguez Guerrero, Gionata Salvietti, Farshid Amirabdollahian, Sivakumar Balasubramanian, Claudio Castellini, Giovanni Di Pino, Zhao Guo, Charmayne Hughes, Fumiya Iida, Tommaso Lenzi, Emanuele Ruffaldi, Fabrizio Sergi, Gim Song Soh, Marco Caimmi, Leonardo Cappello, Raffaella Carloni, Tom Carlson, Maura Casadio, Martina Coscia, Dalia De Santis, Arturo Forner-Cordero, Matthew Howard, Davide Piovesan, Adriano Siqueira, Frank Sup, Masia Lorenzo, Manuel Giuseppe Catalano, Hyunglae Lee, Carlo Menon, Stanisa Raspopovic, Mo Rastgaar, Renaud Ronsse, Edwin van Asseldonk, Bram Vanderborght, Madhusudhan Venkadesan, Matteo Bianchi, David Braun, Sasha Blue Godfrey, Fulvio Mastrogiovanni, Andrew McDaid, Stefano Rossi, Jacopo Zenzeri, Domenico Formica, Nikolaos Karavas, Laura Marchal-Crespo, Kyle B. Reed, Nevio Luigi Tagliamonte, Etienne Burdet, Angelo Basteris, Domenico Campolo, Ashish Deshpande, Venketesh Dubey, Asif Hussain, Vittorio Sanguineti, Ramazan Unal, Glauco Augusto de Paula Caurin, Yasuharu Koike, Stefano Mazzoleni, Hyung-Soon Park, C. David Remy, Ludovic Saint-Bauzel, Nikos Tsagarakis, Jan Veneman, Wenlong Zhang
EditorialIEEE Computer Society
Páginas895-900
Número de páginas6
ISBN (versión digital)9781538622964
DOI
EstadoPublicada - 11 ago 2017
Evento2017 International Conference on Rehabilitation Robotics, ICORR 2017 - London, Reino Unido
Duración: 17 jul 201720 jul 2017

Serie de la publicación

NombreIEEE International Conference on Rehabilitation Robotics
ISSN (versión impresa)1945-7898
ISSN (versión digital)1945-7901

Conferencia

Conferencia2017 International Conference on Rehabilitation Robotics, ICORR 2017
País/TerritorioReino Unido
CiudadLondon
Período17/07/1720/07/17

Huella

Profundice en los temas de investigación de 'A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients'. En conjunto forman una huella única.

Citar esto