A literature review and comparison of three feature location techniques using ArgoUML-SPL

Daniel Cruz, Eduardo Figueiredo, Jabier Martinez

    Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

    22 Citas (Scopus)

    Resumen

    Over the last decades, the adoption of Software Product Line (SPL) engineering for supporting software reuse has increased. An SPL can be extracted from one single product or from a family of related software products, and feature location strategies are widely used for variability mining. Several feature location strategies have been proposed in the literature and they usually aim to map a feature to its source code implementation. In this paper, we present a systematic literature review that identifies and characterizes existing feature location strategies. We also evaluated three different strategies based on textual information retrieval in the context of the ArgoUML-SPL feature location case study. In this evaluation, we compare the strategies based on their ability to correctly identify the source code of several features from ArgoUML-SPL ground truth. We then discuss the strengths and weaknesses of each feature location strategy.

    Idioma originalInglés
    Título de la publicación alojadaProceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems, VAMOS 2019
    EditorialAssociation for Computing Machinery
    ISBN (versión digital)9781450366489
    DOI
    EstadoPublicada - 6 feb 2019
    Evento13th International Workshop on Variability Modelling of Software-Intensive Systems, VAMOS 2019 - Leuven, Bélgica
    Duración: 6 feb 2019 → …

    Serie de la publicación

    NombreACM International Conference Proceeding Series

    Conferencia

    Conferencia13th International Workshop on Variability Modelling of Software-Intensive Systems, VAMOS 2019
    País/TerritorioBélgica
    CiudadLeuven
    Período6/02/19 → …

    Huella

    Profundice en los temas de investigación de 'A literature review and comparison of three feature location techniques using ArgoUML-SPL'. En conjunto forman una huella única.

    Citar esto