A modular neural network approach to fault diagnosis

Clemente Rodríguez*, Santiago Rementería, José Ignacio Martín, Alberto Lafuente, Javier Muguerza, Juan Pérez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

53 Citas (Scopus)

Resumen

Certain real-world applications present serious challenges to conventional neural-network design procedures. Blindly trying to train huge networks may lead to unsatisfactory results and wrong conclusions about the type of problems that can be tackled using that technology. In this paper a modular solution to power systems alarm handling and fault diagnosis is described that overcomes the limitations of "toy" alternatives constrained to small and fixed-topology electrical networks. In contrast to monolithical diagnosis systems, the neural-network-based approach presented here accomplishes the scalability and dynamic adaptability requirements of the application. Mapping the power grid onto a set of interconnected modules that model the functional behavior of electrical equipment provides the flexibility and speed demanded by the problem. After a preliminary generation of candidate fault locations, competition among hypotheses results in a fully justified diagnosis that may include simultaneous faults. The way in which the neural system is conceived allows for a natural parallel implementation.

Idioma originalInglés
Páginas (desde-hasta)326-340
Número de páginas15
PublicaciónIEEE Transactions on Neural Networks
Volumen7
N.º2
DOI
EstadoPublicada - 1996

Huella

Profundice en los temas de investigación de 'A modular neural network approach to fault diagnosis'. En conjunto forman una huella única.

Citar esto