A new grouping genetic algorithm for clustering problems

L. E. Agustín-Blas, S. Salcedo-Sanz*, S. Jiménez-Fernández, L. Carro-Calvo, J. Del Ser, J. A. Portilla-Figueras

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

130 Citas (Scopus)

Resumen

In this paper we present a novel grouping genetic algorithm for clustering problems. Though there have been different approaches that have analyzed the performance of several genetic and evolutionary algorithms in clustering, the grouping-based approach has not been, to our knowledge, tested in this problem yet. In this paper we fully describe the grouping genetic algorithm for clustering, starting with the proposed encoding, different modifications of crossover and mutation operators, and also the description of a local search and an island model included in the algorithm, to improve the algorithm's performance in the problem. We test the proposed grouping genetic algorithm in several experiments in synthetic and real data from public repositories, and compare its results with that of classical clustering approaches, such as K-means and DBSCAN algorithms, obtaining excellent results that confirm the goodness of the proposed grouping-based methodology.

Idioma originalInglés
Páginas (desde-hasta)9695-9703
Número de páginas9
PublicaciónExpert Systems with Applications
Volumen39
N.º10
DOI
EstadoPublicada - ago 2012

Financiación

FinanciadoresNúmero del financiador
Ministerio de Ciencia e InnovaciónECO2010-22065-C03-02

    Huella

    Profundice en los temas de investigación de 'A new grouping genetic algorithm for clustering problems'. En conjunto forman una huella única.

    Citar esto