An Evaluation Study of Intrinsic Motivation Techniques Applied to Reinforcement Learning over Hard Exploration Environments

Alain Andres*, Esther Villar-Rodriguez, Javier Del Ser

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

In the last few years, the research activity around reinforcement learning tasks formulated over environments with sparse rewards has been especially notable. Among the numerous approaches proposed to deal with these hard exploration problems, intrinsic motivation mechanisms are arguably among the most studied alternatives to date. Advances reported in this area over time have tackled the exploration issue by proposing new algorithmic ideas to generate alternative mechanisms to measure the novelty. However, most efforts in this direction have overlooked the influence of different design choices and parameter settings that have also been introduced to improve the effect of the generated intrinsic bonus, forgetting the application of those choices to other intrinsic motivation techniques that may also benefit of them. Furthermore, some of those intrinsic methods are applied with different base reinforcement algorithms (e.g. PPO, IMPALA) and neural network architectures, being hard to fairly compare the provided results and the actual progress provided by each solution. The goal of this work is to stress on this crucial matter in reinforcement learning over hard exploration environments, exposing the variability and susceptibility of avant-garde intrinsic motivation techniques to diverse design factors. Ultimately, our experiments herein reported underscore the importance of a careful selection of these design aspects coupled with the exploration requirements of the environment and the task in question under the same setup, so that fair comparisons can be guaranteed.

Idioma originalInglés
Título de la publicación alojadaMachine Learning and Knowledge Extraction - 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, Proceedings
EditoresAndreas Holzinger, Andreas Holzinger, Andreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weippl, Edgar Weippl
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas201-220
Número de páginas20
ISBN (versión impresa)9783031144622
DOI
EstadoPublicada - 2022
Evento6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2022, held in conjunction with the 17th International Conference on Availability, Reliability and Security, ARES 2022 - Vienna, Austria
Duración: 23 ago 202226 ago 2022

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen13480 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2022, held in conjunction with the 17th International Conference on Availability, Reliability and Security, ARES 2022
País/TerritorioAustria
CiudadVienna
Período23/08/2226/08/22

Financiación

FinanciadoresNúmero del financiador
Eusko JaurlaritzaT1294-19

    Huella

    Profundice en los temas de investigación de 'An Evaluation Study of Intrinsic Motivation Techniques Applied to Reinforcement Learning over Hard Exploration Environments'. En conjunto forman una huella única.

    Citar esto