An intelligent decision support system for assessing the default risk in small and medium-sized enterprises

Diana Manjarres*, Itziar Landa-Torres, Imanol Andonegui

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In the last years, default prediction systems have become an important tool for a wide variety of financial institutions, such as banking systems or credit business, for which being able of detecting credit and default risks, translates to a better financial status. Nevertheless, small and medium-sized enterprises did not focus its attention on customer default prediction but in maximizing the sales rate. Consequently, many companies could not cope with the customers’ debt and ended up closing the business. In order to overcome this issue, this paper presents a novel decision support system for default prediction specially tailored for small and medium-sized enterprises that retrieves the information related to the customers in an Enterprise Resource Planning (ERP) system and obtain the default risk probability of a new order or client. The resulting approach has been tested in a Graphic Arts printing company of The Basque Country allowing taking prioritized and preventive actions with regard to the default risk probability and the customer’s characteristics. Simulation results verify that the proposed scheme achieves a better performance than a naïve Random Forest (RF) classification technique in real scenarios with unbalanced datasets.

Idioma originalInglés
Título de la publicación alojadaArtificial Intelligence and Soft Computing - 16th International Conference, ICAISC 2017, Proceedings
EditoresJacek M. Zurada, Lotfi A. Zadeh, Ryszard Tadeusiewicz, Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer
EditorialSpringer Verlag
Páginas533-542
Número de páginas10
ISBN (versión impresa)9783319590592
DOI
EstadoPublicada - 2017
Evento16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017 - Zakopane, Polonia
Duración: 11 jun 201715 jun 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10246 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017
País/TerritorioPolonia
CiudadZakopane
Período11/06/1715/06/17

Huella

Profundice en los temas de investigación de 'An intelligent decision support system for assessing the default risk in small and medium-sized enterprises'. En conjunto forman una huella única.

Citar esto