An intelligent process model: predicting springback in single point incremental forming

Muhamad S. Khan, Frans Coenen, Clare Dixon*, Subhieh El-Salhi, Mariluz Penalva, Asun Rivero

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

49 Citas (Scopus)

Resumen

This paper proposes an intelligent process model (IPM), founded on the concept of data mining, for predicting springback in the context of sheet metal forming, in particular, single point incremental forming (SPIF). A limitation with the SPIF process is that the application of the process results in geometric deviations, which means that the resulting shape is not necessarily the desired shape. Errors are introduced in a nonlinear manner for a variety of reasons, but a contributor is the geometry of the desired shape. A local geometry matrix (LGM) representation is used that allows the capture of local geometries in such a way that they are suited to input to a classifier generator. It is demonstrated that a rule-based classifier can be used to train the classifier and generate a classification model. The resulting model can then be used to predict errors with respect to new shapes so that some correction strategy can be applied. The reported evaluation of the proposed IPM indicates that very promising results can be obtained with regard to reducing the shape deviations due to springback.

Idioma originalInglés
Páginas (desde-hasta)2071-2082
Número de páginas12
PublicaciónInternational Journal of Advanced Manufacturing Technology
Volumen76
N.º9-12
DOI
EstadoPublicada - feb 2015

Huella

Profundice en los temas de investigación de 'An intelligent process model: predicting springback in single point incremental forming'. En conjunto forman una huella única.

Citar esto