An island grouping genetic algorithm for fuzzy partitioning problems

S. Salcedo-Sanz, J. Del Ser, Z. W. Geem*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases.

Idioma originalInglés
Número de artículo916371
PublicaciónThe Scientific World Journal
Volumen2014
DOI
EstadoPublicada - 2014

Huella

Profundice en los temas de investigación de 'An island grouping genetic algorithm for fuzzy partitioning problems'. En conjunto forman una huella única.

Citar esto