Anomaly detection of a 5-phase AC electric motor using Machine Learning classification methods

Nerea Robles*, Danel Madariaga, Fernando Alvarez-Gonzalez, Andres Sierra-Gonzalez

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

With the goal of performing condition monitoring and anomaly detection applied to electric machines, tagged datasets are synthetically generated, consisting of time series of electrical and mechanical variables from a 5-phase AC synchronous motor, in different conditions of health or abnormal states. Different off-the-shelf Machine Learning classification methods are then applied to those datasets, to generate models that can identify the different abnormal states from the measured variables. Models' performance is compared, and the best candidate selected for doing real-time anomaly detection and predictive maintenance of similar AC electric motors.

Idioma originalInglés
Título de la publicación alojadaInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350322972
DOI
EstadoPublicada - 2023
Evento2023 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023 - Tenerife, Canary Islands, Espana
Duración: 19 jul 202321 jul 2023

Serie de la publicación

NombreInternational Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023

Conferencia

Conferencia2023 International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023
País/TerritorioEspana
CiudadTenerife, Canary Islands
Período19/07/2321/07/23

Huella

Profundice en los temas de investigación de 'Anomaly detection of a 5-phase AC electric motor using Machine Learning classification methods'. En conjunto forman una huella única.

Citar esto