Application-Oriented Data Analytics in Large-Scale Metal Sheet Bending

Mariluz Penalva, Ander Martín, Cristina Ruiz, Víctor Martínez, Fernando Veiga*, Alain Gil del Val, Tomás Ballesteros

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

The sheet-metal-forming process is crucial in manufacturing various products, including pipes, cans, and containers. Despite its significance, controlling this complex process is challenging and may lead to defects and inefficiencies. This study introduces a novel approach to monitor the sheet-metal-forming process, specifically focusing on the rolling of cans in the oil-and-gas sector. The methodology employed in this work involves the application of temporal-signal-processing and artificial-intelligence (AI) techniques for monitoring and optimizing the manufacturing process. Temporal-signal-processing techniques, such as Markov transition fields (MTFs), are utilized to transform time series data into images, enabling the identification of patterns and anomalies. synamic time warping (DTW) aligns time series data, accommodating variations in speed or timing across different rolling processes. K-medoids clustering identifies representative points, characterizing distinct phases of the rolling process. The results not only demonstrate the effectiveness of this framework in monitoring the rolling process but also lay the foundation for the practical application of these methodologies. This allows operators to work with a simpler characterization source, facilitating a more straightforward interpretation of the manufacturing process.

Idioma originalInglés
Número de artículo13187
PublicaciónApplied Sciences (Switzerland)
Volumen13
N.º24
DOI
EstadoPublicada - dic 2023

Huella

Profundice en los temas de investigación de 'Application-Oriented Data Analytics in Large-Scale Metal Sheet Bending'. En conjunto forman una huella única.

Citar esto