Automatic slag characterization based on hyperspectral image processing

Sergio Rodriguez*, Artzai Picon, Jose Angel Gutierrez, Arantza Bereciartua, Pedro Iriondo

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Nowadays, there are certain tasks that are not automated and still rely on visual inspection of an expert. In the case of the steel industry, the estimation of the deoxidation and desulfuration of steel is done at the Ladle Furnace by an expert and it is latterly analyzed in a laboratory by the use of modern spectrographs. However, the automation of this process does not constitute a trivial task. In this paper we propose a novel method for steel slag characterization, in order to automate the previous online estimation process. This paper presents the used algorithm, which is based on computer vision based hyperspectral imaging and preliminary results that forecast a promising use of optical hyperspectral technologies for this industrial application.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2010
DOI
EstadoPublicada - 2010
Evento15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2010 - Bilbao, Espana
Duración: 13 sept 201016 sept 2010

Serie de la publicación

NombreProceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2010

Conferencia

Conferencia15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2010
País/TerritorioEspana
CiudadBilbao
Período13/09/1016/09/10

Huella

Profundice en los temas de investigación de 'Automatic slag characterization based on hyperspectral image processing'. En conjunto forman una huella única.

Citar esto