Bridge damage identification under varying environmental and operational conditions combining Deep Learning and numerical simulations

Ana Fernandez-Navamuel*, David Pardo, Filipe Magalhães, Diego Zamora-Sánchez, Ángel J. Omella, David Garcia-Sanchez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

This work proposes a novel supervised learning approach to identify damage in operating bridge structures. We propose a method to introduce the effect of environmental and operational conditions into the synthetic damage scenarios employed for training a Deep Neural Network, which is applicable to large-scale complex structures. We apply a clustering technique based on Gaussian Mixtures to effectively select Q representative measurements from a long-term monitoring dataset. We employ these measurements as the target response to solve various Finite Element Model Updating problems before generating different damage scenarios. The synthetic and experimental measurements feed two Deep Neural Networks that assess the structural health condition in terms of damage severity and location. We demonstrate the applicability of the proposed method with a real full-scale case study: the Infante Dom Henrique bridge in Porto. A comparative study reveals that neglecting different environmental and operational conditions during training detracts the damage identification task. By contrast, our method provides successful results during a synthetic validation.

Idioma originalInglés
Número de artículo110471
PublicaciónMechanical Systems and Signal Processing
Volumen200
DOI
EstadoPublicada - 1 oct 2023

Financiación

FinanciadoresNúmero del financiador
BERC2022-2025, IT1456-22
European HorizonGA 101103698
Spanish Ministry of Economic and Digital Transformation
U.S. Department of Education
Federación Española de Enfermedades RarasCEX2021-001142-S/MICIN/AEI/10.13039/501100011033, PDC2021-121093-I00
Eusko JaurlaritzaKK-2021/00095
Ministerio de Ciencia e InnovaciónTED2021-132783B-I00, PID2019-108111RB-I00
Ministério da Ciência, Tecnologia e Ensino Superior
Fundació Catalana de Trasplantament
Institute of Research and Development in Structures and Construction

    Huella

    Profundice en los temas de investigación de 'Bridge damage identification under varying environmental and operational conditions combining Deep Learning and numerical simulations'. En conjunto forman una huella única.

    Citar esto