COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary Multitasking: A coevolutionary bat algorithm for discrete evolutionary multitasking

Eneko Osaba, Javier Del Ser, Xin-She Yang, Andres Iglesias, Akemi Galvez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

Multitasking optimization is an emerging research field which has attracted lot of attention in the scientific community. The main purpose of this paradigm is how to solve multiple optimization problems or tasks simultaneously by conducting a single search process. The main catalyst for reaching this objective is to exploit possible synergies and complementarities among the tasks to be optimized, helping each other by virtue of the transfer of knowledge among them (thereby being referred to as Transfer Optimization). In this context, Evolutionary Multitasking addresses Transfer Optimization problems by resorting to concepts from Evolutionary Computation for simultaneous solving the tasks at hand. This work contributes to this trend by proposing a novel algorithmic scheme for dealing with multitasking environments. The proposed approach, coined as Coevolutionary Bat Algorithm, finds its inspiration in concepts from both co-evolutionary strategies and the metaheuristic Bat Algorithm. We compare the performance of our proposed method with that of its Multifactorial Evolutionary Algorithm counterpart over 15 different multitasking setups, composed by eight reference instances of the discrete Traveling Salesman Problem. The experimentation and results stemming therefrom support the main hypothesis of this study: the proposed Coevolutionary Bat Algorithm is a promising meta-heuristic for solving Evolutionary Multitasking scenarios.
Idioma originalInglés
Título de la publicación alojadaunknown
EditoresValeria V. Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Peter M.A. Sloot, Peter M.A. Sloot, Peter M.A. Sloot, Jack J. Dongarra, Sérgio Brissos, João Teixeira
EditorialSpringer Nature
Páginas244-256
Número de páginas13
Volumen12141
ISBN (versión digital)978-3-030-50426-7
ISBN (versión impresa)978-3-030-50425-0, 9783030504250
DOI
EstadoPublicada - 2020
Evento20th International Conference on Computational Science, ICCS 2020 - Amsterdam, Países Bajos
Duración: 3 jun 20205 jun 2020

Serie de la publicación

Nombre0302-9743

Conferencia

Conferencia20th International Conference on Computational Science, ICCS 2020
País/TerritorioPaíses Bajos
CiudadAmsterdam
Período3/06/205/06/20

Palabras clave

  • Transfer optimization
  • Evolutionary multitasking
  • Bat algorithm
  • Multifactorial optimization
  • Traveling salesman problem

Project and Funding Information

  • Project ID
  • info:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR
  • Funding Info
  • Eneko Osaba and Javier Del Ser would like to thank the Basque Government for its support through the EMAITEK and ELKARTEK programs. Javier Del Ser receives support from the Consolidated Research Group MATHMODE (IT1294-9) granted by the Department of Education of the Basque Government. Andres Iglesias and Akemi Galvez thank the Computer Science National Program of the Spanish Research Agency and European Funds, Project #TIN2017-89275-R (AEI/FEDER, UE), and the PDE-GIR project of the European Union’s Horizon 2020 programme, Marie Sklodowska-Curie Actions grant agreement #778035.

Huella

Profundice en los temas de investigación de 'COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary Multitasking: A coevolutionary bat algorithm for discrete evolutionary multitasking'. En conjunto forman una huella única.

Citar esto